Meson-Meson Contributions to the Nucleon Sigma-Term and Electromagnetic form Factors

  • B. C. Pearce


Our modern understanding of hadrons is of a core of valence quarks surrounded by a sea of \(\bar q\) pairs and gluons. For low energy processes (~ 1 GeV) there is good reason to assume (Witten, 1979; T’Hooft, 1974) that much of the detailed dynamics of the quarks can be neglected and the cloud can be approximated by the correlated, colour neutral \(\bar q\) states that we know as mesons. This is the basis of the success of the meson exchange models of medium energy nuclear physics whose degrees of freedom consist of nucleons, mesons and isobars.


Form Factor Partial Wave Electromagnetic Form Factor Final State Interaction Meson Exchange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Amendolia, S.R. et al., 1984, Measurement of the pion form factor in the time-like region for q 2 values between 0.1 (GeV/c)2 and 0.18 (GeV/c)2, Phys. Lett. B138: 445.Google Scholar
  2. Amendolia, S.R. et al., 1986, A measurement of the space-like pion electromagnetic form factor, Nucl. Phys. B277: 168.ADSCrossRefGoogle Scholar
  3. Bando, M., Kugo, T., Uehara, S., Yamawaki, K. and Yanagida, T., 1985, Is the p meson a dynamical gauge boson of hidden local symmetry? Phys. Rev. Leu. 54: 1215.ADSCrossRefGoogle Scholar
  4. Donoghue, J.F., Gasser, J. and Leutwyler, H., 1990, The decay of a light Higgs boson, Nucl. Phys. B343: 341.ADSCrossRefGoogle Scholar
  5. Gasser, J., Leutwyler, H. and Sainio, M.E., 199la, Form factor of the v-term, Phys. Lett. B253: 260.Google Scholar
  6. Gasser, J., Leutwyler, H. and Sainio, M.E., 1991b, Sigma-term update, Phys. Lett. B253: 252.Google Scholar
  7. Godfrey, S. and Isgur, N., 1985, Mesons in a relativized quark model with chromodynamics, Phys. Rev. D 32: 189.ADSCrossRefGoogle Scholar
  8. Höhler, G., 1983, “Pion-Nucleon Scattering,” Landolt-Börnstein Vol. I/9ó2, H. Schopper, ed., Springer-Verlag.Google Scholar
  9. Höhler, G., Kaiser, E, Koch, R. and Pietarinen, E., 1979, “Handbook of Pion-Nucleon Scattering,” Physics Data 12–1.Google Scholar
  10. Koch, R., 1982, A new determination of the irN sigma term using hyperbolic dispersion relations in the (v2, t) plane, Z. Phys. C 15: 161.ADSCrossRefGoogle Scholar
  11. Lohse, D., Durso, J.W., Holinde, K. and Speth, J., 1990, Meson exchange model for pseudoscalar meson-meson scattering, Nucl. Phys. A516: 513.CrossRefGoogle Scholar
  12. Morgan, D. and Pennington, M.R., 1991, f o (S*): molecule or quark state? Phys. Lett. B258: 444.Google Scholar
  13. Pearce, B.C. and Afnan, I.R., 1986, Renormalized irNN coupling constant and the P-wave phase shifts in the cloudy bag model, Phys. Rev. C 34: 991.ADSCrossRefGoogle Scholar
  14. Pearce, B.C., Holinde, K. and Speth, J., 1992, The scalar form factor of the pion, kaon and nucleon, Nucl. Phys. A541: 663.CrossRefGoogle Scholar
  15. T’Hooft, G., 1974, A planar diagram theory for strong interactions, Nucl. Phys. B72: 461.MathSciNetADSCrossRefGoogle Scholar
  16. Weinberg, S., 1968, Nonlinear realizations of chiral symmetry, Phys. Rev. 166: 1568.Google Scholar
  17. Weinstein, J. and Isgur, N., 1990, KK molecules, Phys. Rev. D 41: 2236.Google Scholar
  18. Witten, E., 1979, Baryons in the 1/N expansion, Nucl. Phys. B160: 57.MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • B. C. Pearce
    • 1
  1. 1.Forschungszentrum JülichInstitut für KernphysikJülichFed. Rep. Germany

Personalised recommendations