Advertisement

Heavy Quark Symmetry and Heavy-Flavor-Conserving Nonleptonic Weak Decays

  • Chi-Yee Cheung

Abstract

Recent years have seen intense activities in the field of heavy quark physics, and remarkable progress has been made.1–11 In the limit of infinite heavy quark mass, the strong interactions of a heavy quark become much simplified. Namely, the effective QCD Lagrangian becomes independent of the flavor and spin of the heavy quark. For N f heavy quark flavors, the new spin and flavor symmetries combine to form a SU(2N f ) symmetry group (heavy quark symmetry) which is not manifest in the original Lagrangian. Heavy quark symmetry allows us to predict many properties of heavy hadrons, which are taken to be particles containing a single heavy quark. Of course, even in this infinite heavy quark mass limit, low energy hadronic physics (confinement, etc.) remains non-perturbative and there is still no solution to it. What heavy quark symmetry can do for us is to provide simplifying relations among the static and transition properties of the heavy hadrons. For instance, the spin-flavor symmetry implies that the excitation spectrum and transition form factors of a heavy hadron do not depend on the spin and flavor of the heavy quark involved. Thus, in the symmetry limit, the heavy quark behaves like a static color source. This is analogous to the well known case of a hydrogen-like atom, whose excitation spectrum and transition form factors are independent of the mass and spin of its heavy nucleus, which acts as a static charge source.

Keywords

Heavy Quark Light Quark Transition Form Factor Heavy Meson Heavy Baryon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nussinov and W. Wetzel, Phys. Rev. D36, 130 (1987)ADSGoogle Scholar
  2. M.B. Voloshin and M.A. Shifman, Soy. J. Nucl. Phys. 45, 292 (1987)Google Scholar
  3. G.P. LePage and B.A. Thacker, Nucl. Phys. B (Proc. Suppl.) 4, 199 (1988)CrossRefGoogle Scholar
  4. H.D. Politzer and M.B. Wise, Phys. 681 (1988);Google Scholar
  5. 2.
    N. Isgur and M.B. Wise Phys. Lett. B232, 113 (1989);Google Scholar
  6. 3.
    E. Eichten and B. Hill, B234, 511 (1990).Google Scholar
  7. 4.
    H. Georgi, Phys. Lett. B240, 447 (1990).Google Scholar
  8. 5.
    B. Grinstein, Nucl. Phys. B339, 253 (1990).MathSciNetADSCrossRefGoogle Scholar
  9. 6.
    N. Isgur and M.B. Wise, Nucl. Phys. B348, 276 (1991).ADSCrossRefGoogle Scholar
  10. 7.
    A.F. Falk, H. Georgi, B. Grinstein, and M.B. Wise, Nucl. Phys. B343, 1 (1990).ADSCrossRefGoogle Scholar
  11. 8.
    H. Georgi, Nucl. Phys. B348, 293 (1991).ADSCrossRefGoogle Scholar
  12. 9.
    M.B. Wise, in “Particle Physics - The Factory Era”, B.A. Campbell, A.N. Kamal, P. Kitching, and F.C. Khanna, ed., World Scientific, Singapore (1991).Google Scholar
  13. 10.
    J.D. Bjorken, in “Proceedings of the 18th SLAC Summer Institute on Particle Physics”, J. Hawthorne, ed., SLAC, Stanford (1990).Google Scholar
  14. 11.
    H. Georgi, in “Perspectives in the Standard Model”, R.K. Ellis, C.T. Hill, and J.D. Lykken, ed., World Scientific, Singapore (1992).Google Scholar
  15. 12.
    T.M. Yan, H.Y. Cheng, C.Y. Cheung, G.L. Lin, Y.C. Lin, and H.L. Yu, Phys. Rev. D46, 1148 (1992)Google Scholar
  16. T.M. Yan, Chin. J. Phys. 30, 509 (1993).Google Scholar
  17. 13.
    M.W. Wise, Phys. Rev. D45, R2188 (1992).ADSGoogle Scholar
  18. 14.
    G. Burdman and J. Donoghue, Phys. Lett. B280, 287 (1992).Google Scholar
  19. 15.
    P. Cho, Phys. Lett. B285, 145 (1922).Google Scholar
  20. 16.
    H.Y. Cheng, C.Y. Cheung, G.L. Lin, Y.C. Lin, T.M. Yan, and H.L. Yu, Phys. Rev. D47, 1030 (1993).ADSGoogle Scholar
  21. 17.
    P. Cho and H. Georgi, Phys. Lett. B296, 408 (1992).Google Scholar
  22. 18.
    H.Y. Cheng, C.Y. Cheung, G.L. Lin, Y.C. Lin, T.M. Yan, and H.L. Yu, Phys. Rev. D46, 5060 (1992).ADSGoogle Scholar
  23. 19.
    Particle Data Group, Phys. Rev. D45, S1 (1992).ADSGoogle Scholar
  24. 20.
    See, e.g., H.Y. Cheng, Int. J. Mod. Phys. A4, 495 (1989).Google Scholar
  25. 21.
    See, e.g., H. Georgi, “Weak Interactions and Modern Particle Theory”, Benjamin/Cummings, Menlo Park, CA (1984).Google Scholar
  26. 22.
    A. Chodos, R.L. Jaffe, K. Johnson, and C.B. Thorn, Phys. Rev. D10 2599 (1974).MathSciNetADSGoogle Scholar
  27. T. DeGrand, R.L. Jaffe, K. Johnson, and J. Kiskis, ibid. D12 2060 (1975).ADSCrossRefGoogle Scholar
  28. 23.
    B. Stech, Nucl. Phys., 106 (1988)Google Scholar
  29. H.G. Dosch, M. Jamin, and B. Stech, Z. Phys. C 42, 167 (1989)CrossRefGoogle Scholar
  30. M. Jamin and M. Neubert, Phys. Lett. 238 387 (1990)Google Scholar
  31. M. Neubert and B. Stech, Phys. Rev. D44, 775 (1991).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Chi-Yee Cheung
    • 1
  1. 1.Institute of PhysicsAcademia SinicaTaipeiTaiwan, Rep. of China

Personalised recommendations