Convective Instabilities in Liquid Crystals Observed by Neutron Scattering

  • T. Riste
  • K. Otnes
Part of the NATO ASI Series book series (NSSB, volume 112)


We like to consider neutron scattering as an ideal tool for the investigation of the dynamics of condensed matter systems. The advantages of a probe of atomic dimension and mass, and a de Broglie wavelength of interatomic dimension, are obvious. The method has its limitations, however, either because of resolution/ intensity problems, or because of the very nature of the phenomenon we are investigating. The former problem can be remedied by neutron sources of novel designs and higher intensity. The latter situation is met when the characteristic times that we want to measure are approaching macroscopic values, as for a critical system at Tc, or in an externally stressed, nonequilibrium system. Eventually conventional neutron spectroscopy has to fail when the neutron passage time over a correlation range becomes shorter than the characteristic time that we are trying to measure. We shall discuss below the merits of a complementary method, a real-time method, which in principle works when the conventional method fails. It seems worthwhile to seriously consider this method as much of the scientific interest moves to mesoscopic and to nonequilibrium systems. We have used this method for some years in the study of convection instabilities in nematic liquid crystals. Probably we have discovered more problems than we have solved, but perhaps a presentation of them is justified at a workshop where we are discussing the problems of tomorrow.


Power Spectrum Liquid Crystal Nematic Liquid Crystal Nonequilibrium System Transmitted Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.C. Champeney, Fourier Transforms and Their Physical Applications, Academic Press, London and New York (1973).MATHGoogle Scholar
  2. 2.
    R.K. Otnes and L. Enochsen, Applied Time Series Analysis, John Wiley and Sons, New York (1978).MATHGoogle Scholar
  3. 3.
    H.B. Miller and T. Riste, Phys. Rev. Lett. 34, 996 (1975).ADSCrossRefGoogle Scholar
  4. 4.
    K. Otnes and T. Riste, Phys. Rev. Lett. 44, 1490 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    P. Grassberger and I. Procaccia, Phys. Rev. Lett. 50, 346 (1983)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    A. Ben.Mizrakhi, I. Procaccia and P. Grassberger, Phys. Rev. 29A, (1984)Google Scholar
  7. 7.
    P.G. de Gennes, The Physics of Liquid Crystals, Clarendon Press, Oxford (1974).Google Scholar
  8. 8.
    R. Pynn, K. Otnes and T. Riste, Sol. St. Commun. 11, 1365 (1972).ADSCrossRefGoogle Scholar
  9. 9.
    P. Manneville, Phys. Lett. 95A, 463 (1983).Google Scholar
  10. 10.
    L. Kramer, E. Ben-Jacob, H. Brand and M.C. Cross, Phys. Rev. Lett. 49, 1891 (1982)MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    H. Haken, Synergetics - An Introduction, Springer-Verlag, Berlin (1977).MATHCrossRefGoogle Scholar
  12. 12.
    L.A. Lugiato, P. Mandel, S.T. Dembinski and A. Kossakowski, Phys. Rev. A18, 238 (1978).ADSCrossRefGoogle Scholar
  13. 13.
    L.A. Lugiato and L.M. Narducci in Nonequilibrium Cooperative Phenomena in Physics and Related Fields (eds. M.G. Velarde and M. Scully) Plenum (to be published).Google Scholar
  14. 14.
    V. Benza and L.A. Lugiato, Z. Phys. B35, 383 (1979).Google Scholar
  15. 15.
    V. Benza and L.A. Lugiato, Z. Phys. B47, 79 (1982).MathSciNetCrossRefGoogle Scholar
  16. 16.
    L.A. Lugiato, V. Benza, L.M. Narducci and J.D. Farina, Z. Phys. B49, 351 (1983).CrossRefGoogle Scholar
  17. 17.
    K. Ikeda, Opt. Commun. 30, 257 (1979).ADSCrossRefGoogle Scholar
  18. 18.
    H. Haken, Z. Phys. B21, 105 (1975).Google Scholar
  19. 19.
    H. Haken, Phys. Lett. 53A, 77 (1975).Google Scholar
  20. 20.
    E.N. Lorenz, J. Atmos. Sci. 20, 130 (1963).ADSCrossRefGoogle Scholar
  21. 21.
    S. Chandrasekhar, Hydrodynamics and Hydrodynamic Stability, Clarendon Press, Oxford (1961).Google Scholar
  22. 22.
    H.N.W.Lekkerkerker, J. Phys. Lett. 38, L-277 (1977).Google Scholar
  23. 23.
    E. Dubois-Violette and M. Gabay, J. Physique 43, 1305 (1982).CrossRefGoogle Scholar
  24. 24.
    K. Otnes and T. Riste, Heiv. Phys. Acta 56, 837 (1983).Google Scholar
  25. 25.
    T. Riste and K. Otnes, Multicritical Phenomena (eds. R. Pynn and A.T. Skjeltorp) Plenum, New York and London (1984).Google Scholar
  26. 26.
    T. Geisel and J. Nierwetberg, Phys. Rev. Lett. 48, 7 (1982).MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    T. Riste, Nonequilibrium Cooperative Phenomena in Physics and Related Fields (eds. M.G. Velarde and M. Scully), Plenum (to be published).Google Scholar
  28. 28.
    Y. Gu, M. Tung, J.M. Yuan, D.H. Feng and L. Narducci, Phys. Rev. Lett. 52, 701 (1984)MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    E. Knobloch, N.O. Weiss and L.N. da Costa, J. Fluid Mech. 113, 153 (1983) and references therein.Google Scholar
  30. 30.
    M.G. Velarde, Nonlinear Phenomenon at Phase Transitions and Instabilities, (ed. T. Riste) Plenum, New York and London (1982) p. 205.CrossRefGoogle Scholar
  31. 31.
    J.D. Farmer, Evolution of Order and Chaos (ed. H. Haken ), Springer-Verlag, Berlin (1982) p. 228.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • T. Riste
    • 1
  • K. Otnes
    • 1
  1. 1.Institute for Energy TechnologyKjellerNorway

Personalised recommendations