Advertisement

Quantum Zeno Effect

  • Dipankar Home

Abstract

A quantum system always evolves through coherent superposition of states—an initial state develops into a superposition of states, with the relative weight factors changing with time in a continuous way. The probability of finding a system in the initial state after it is allowed to evolve for a certain period of time is known as survival probability of the evolving system. If we compute the survival probability as a function of the frequency of intermediate measurements (to determine whether the system is in its original state or not), we find that survival probability increases with the frequency of measurements and it tends to unity in the limit of a continuous series of measurements. This means that the dynamical evolution of an isolated quantum system is significantly modified due to intervening measurements. In particular the evolution is inhibited by repeated frequent measurements even if these measurements are apparently nondisturbing; that is, they do not entail a direct exchange of energy or momentum (i.e., the measurements may be of the negative-result type).

Keywords

Survival Probability Beam Splitter Decay Product Optical Pulse Local Realism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Fonda, G. C. Ghirardi, A. Rimini, and T. Weber, Nuov. Cim. 15A, 689 (1973).ADSCrossRefGoogle Scholar
  2. 2.
    A. Degasperis, L. Fonda, and G. C. Ghirardi, Nuov. Cim. 21A, 471 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    B. Misra and E. C. G. Sudarshan, J. Math. Phys. 18, 765 (1977).MathSciNetADSCrossRefGoogle Scholar
  4. C. B. Chiu, E. C. G. Sudarshan, and B. Misra, Phys. Rev. D 16, 520 (1977).MathSciNetADSCrossRefGoogle Scholar
  5. 4.
    A. Peres, Am. J. Phys. 48, 931 (1980).MathSciNetADSCrossRefGoogle Scholar
  6. A. Peres, Ann. Phys. 129, 33 (1980).MathSciNetADSCrossRefGoogle Scholar
  7. G. C. Ghirardi, C. Omero, T. Weber, and R. Rimini, Nuov. Cim. 52A, 421 (1979).ADSCrossRefGoogle Scholar
  8. 5.
    D. Home and M. A. B. Whitaker, J. Phys. A 25, 657 (1992).ADSCrossRefGoogle Scholar
  9. 6.
    A. Sudbery, in Quantum Concepts in Space and Time (R. Penrose and I. Isham, eds.) (Clarendon Press, Oxford, UK, 1986).Google Scholar
  10. A. Sudbery, Ann. Phys. 157, 512 (1984).MathSciNetADSCrossRefGoogle Scholar
  11. 7.
    K. Kraus, Found. Phys. 11, 547 (1981).MathSciNetADSCrossRefGoogle Scholar
  12. 8.
    D. Home and M. A. B. Whitaker, J. Phys. A 19, 1847 (1986).MathSciNetADSCrossRefGoogle Scholar
  13. 9.
    L. Fonda, G. C. Ghirardi, and A. Rimini, Rep. Prog. Phys. 41, 587 (1978).ADSCrossRefGoogle Scholar
  14. 10.
    A. Peres, Ann. Phys. 129, 33 (1980).MathSciNetADSCrossRefGoogle Scholar
  15. 11.
    L. B. Norman, S. B. Gazes, S. G. Crane, and D. A. Bennett, Phys. Rev. Lett. 60, 2246 (1988).ADSCrossRefGoogle Scholar
  16. 12.
    P. T. Greenland and A. M. Lane, Phys. Lett. A 117, 181 (1986).ADSCrossRefGoogle Scholar
  17. 13.
    K. Rzaozewski, J. Phys. B 15, L 661 (1982).ADSGoogle Scholar
  18. 14.
    S. L. Haan and J. Cooper, J. Phys. B 17, 3481 (1984).ADSCrossRefGoogle Scholar
  19. 15.
    P. T. Greenland, Nature 335, 298 (1988).ADSCrossRefGoogle Scholar
  20. 16.
    N. Carjan, O. Serot, and D. Strottman, in Proc. 4th Int. Symp. Foundations of Quantum Mechanics in the Light of New Technology (M. Tsukada et al., eds.) (Physical Society of Japan, Tokyo, 1992).Google Scholar
  21. 17.
    D. Home and M. A. B. Whitaker, J. Phys. A 25, 657 (1992).ADSCrossRefGoogle Scholar
  22. 18.
    W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 41, 2295 (1990).ADSCrossRefGoogle Scholar
  23. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, Phys. Rev. A 43, 5168 (1991).ADSCrossRefGoogle Scholar
  24. 19.
    T. Petrosky, S. Tasaki, and I. Prigogine, Phys. Lett. A 151, 109 (1990).MathSciNetADSCrossRefGoogle Scholar
  25. L. E. Ballentine, Phys. Rev. A 43, 5165 (1991).ADSCrossRefGoogle Scholar
  26. 20.
    H. Nakazato, M. Namiki, S. Pascazio, and H. Rauch, Phys. Lett. A 217, 203 (1996).ADSCrossRefGoogle Scholar
  27. 21.
    A. Peres and A. Ron, Phys. Rev. A 42, 5720 (1990).ADSCrossRefGoogle Scholar
  28. 22.
    S. Inagaki, M. Namiki, and T. Tajiri, Phys. Lett. A 166, 5 (1992).ADSCrossRefGoogle Scholar
  29. S. Inagaki, M. Namiki, and T. Tajiri, Vistas in Astronomy 37, 273 (1993).ADSCrossRefGoogle Scholar
  30. 23.
    D. Home and M. A. B. Whitaker, Phys. Lett. A 173, 327 (1993).ADSCrossRefGoogle Scholar
  31. S. Pascazio, M. Namiki, G. Badurek, and H. Rauch, Phys. Lett. A 179, 155 (1993).ADSCrossRefGoogle Scholar
  32. 24.
    G. S. Agarwal and S. P. Tewari, Phys. Lett. A 185, 139 (1994).ADSCrossRefGoogle Scholar
  33. 25.
    A. K. Pati and S. V. Lawande, Phys. Lett. A 223, 233 (1996).MathSciNetADSMATHCrossRefGoogle Scholar
  34. 26.
    H. Fearn and W. E. Lamb, Phys. Rev. A 46, 1199 (1992).ADSCrossRefGoogle Scholar
  35. H. Fearn and W. E. Lamb, Phys. Rev. A 48, 2505 (1993).ADSCrossRefGoogle Scholar
  36. 27.
    D. Home and M. A. B. Whitaker, Phys. Rev. A 48, 2502 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Dipankar Home
    • 1
  1. 1.Bose InstituteCalcuttaIndia

Personalised recommendations