Advertisement

Wave Particle Duality of Light and Complementarity

  • Dipankar Home

Abstract

The entire issue of wave particle duality hinges on how we use the conceptual ideas of wave and particle. If we remain confined within the formalism of quantum theory without demanding a visualizable understanding, the problem of wave particle duality ceases to be relevant. In particular if we consider optical experiments, the rules of quantum optics are well-defined and sufficient to predict correctly all observable results. Electric and magnetic field operators are the basic dynamical variables in this formalism. The photon notion enters the theory only as a secondary entity, defined as excitations associated with normal modes in terms of which any electromagnetic field can be expanded. From this point of view, the particle aspect of radiation takes on a concrete meaning only when a detection process is considered; the quantized decrease in field energy resulting from a detection process can be described in terms of removing photons from the field.

Keywords

Beam Splitter Light Pulse Interference Pattern Classical Wave Wave Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Mandel, Prog. Opt. 13, 27 (1976).Google Scholar
  2. R. Kidd, J. Ardini, and A. Anton, Am. J. Phys. 57, 27 (1989).MathSciNetADSGoogle Scholar
  3. 2.
    M. Brune, F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, Phys. Rev. Lett. 76, 1800 (1996).ADSMATHGoogle Scholar
  4. 3.
    P. A. M. Dirac, Principles of Quantum Mechanics (Oxford Univer. Press, Oxford, UK, 1958), pp. 7–10.MATHGoogle Scholar
  5. 4.
    G. S. Agarwal and R. Simon, Phys. Rev. A 42, 6924 (1990).MathSciNetADSGoogle Scholar
  6. E. C. G. Sudarshan and T. Rothman, Am. J. Phys. 59, 592 (1991).ADSGoogle Scholar
  7. W. E. Lamb, Jr., Appi Phys. B 60, 77 (1995).ADSGoogle Scholar
  8. 5.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge Univer. Press, Cambridge, UK, 1987), p. 189.MATHGoogle Scholar
  9. 6.
    N. Bohr, Nature (Supple.) 128, 691 (1931).ADSGoogle Scholar
  10. 7.
    N. Bohr, Dialectica 2, 312 (1948).MATHGoogle Scholar
  11. 8.
    W. Heisenberg, Physics and Philosophy (Harper and Row, New York, 1958), p. 179.Google Scholar
  12. 9.
    W. Heisenberg, (quoted by H. J. Folse), Philosophy of Niels Bohr (North-Holland, Amsterdam, 1985), pp. 96–97.Google Scholar
  13. 10.
    N. Bohr, Atomic Theory and the Description of Nature (Cambridge Univer. Press, Cambridge, UK, 1934), p. 56.MATHGoogle Scholar
  14. 11.
    N. Bohr, Atomic Theory and the Description of Nature (Cambridge Univer. Press, Cambridge, UK, 1934), p. 53.MATHGoogle Scholar
  15. 12.
    N. Bohr, Atomic Theory and the Description of Nature (Cambridge Univer. Press, Cambridge, UK, 1934), p. 10.MATHGoogle Scholar
  16. 13.
    N. Bohr, Atomic Theory and the Description of Nature (Cambridge Univer. Press, Cambridge, UK, 1934), p. 19.MATHGoogle Scholar
  17. 14.
    D. Murdoch, Niels Bohr’s Philosophy of Physics (Cambridge Univer. Press, Cambridge, UK, 1987), p. 60.Google Scholar
  18. 15.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge Univer. Press, Cambridge, UK, 1987), p. 190.MATHGoogle Scholar
  19. 16.
    H. J. Folse, Philosophy of Niels Bohr (North-Holland, Amsterdam, 1985), p. 117.Google Scholar
  20. 17.
    F. Selleri, Quantum Paradoxes and Physical Reality (Kluwer, Dordrecht, Netherlands, 1990), pp. 100–101.Google Scholar
  21. 18.
    N. Bohr, Atomic Theory and the Description of Nature (Cambridge Univer. Press, Cambridge, UK, 1934), pp. 56–57.MATHGoogle Scholar
  22. 19.
    N. Bohr, in Albert Einstein Philosopher-Scientist (P. A. Schilpp, ed.) (Library of Living Philosophers, Evanston, IL, 1949). p. 210.Google Scholar
  23. 20.
    J. A. Wheeler, At Home in the Universe (AIP, New York, 1994), pp. 120, 311.Google Scholar
  24. 21.
    H. J. Folse, Philosophy of Niels Bohr (North-Holland, Amsterdam, 1985), p. 195.Google Scholar
  25. 22.
    H. J. Folse, Philosophy of Niels Bohr (North-Holland, Amsterdam, 1985), p. 195, chap. 6.Google Scholar
  26. 23.
    J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge Univer. Press, Cambridge, UK, 1987), p. 189.MATHGoogle Scholar
  27. 24.
    D. Murdoch, Niels Bohr Philosophy of Physics (Cambridge Univer. Press, Cambridge, UK, 1987), chap. 2.Google Scholar
  28. 25.
    N. Bohr, Nature, 112, 4 (1923).Google Scholar
  29. 26.
    R. Loudon, Quantum Theory of Light, (Oxford Univer. Press, Oxford, UK, 1983), chap. 6.Google Scholar
  30. 27.
    L. E. Ballentine, Quantum Mechanics, (Prentice-Hall, Englewood Cliffs, NJ, 1990), chap. 19.Google Scholar
  31. 28.
    W. K. Wooters and W. Zurek, Phys. Rev. D 19, 473 (1979).ADSGoogle Scholar
  32. 29.
    D. M. Greenberger and A. Yasin, Phys. Lett. A 128, 391 (1988).ADSGoogle Scholar
  33. 30.
    D. Home and P. N. Kaloyerou, J. Phys. A 22, 3253 (1989).ADSGoogle Scholar
  34. 31.
    A. Tonomura, J. Endo, T. Matsuda, T. Kawasaki, and H. Ezawa, Am. J. Phys. 57, 117 (1989).ADSGoogle Scholar
  35. 32.
    S. Rangwala and S. M. Roy, Phys. Lett. A 190, 1 (1994).ADSGoogle Scholar
  36. 33.
    A. Ray and D. Home, Phys. Lett. A 178, 33 (1993).ADSGoogle Scholar
  37. 34.
    N. Bohr, in Albert Einstein: Philosopher-Scientist (P. A. Schilpp, ed.) (Library of Living Philosophers, Evanston, IL, 1949), pp. 200–241.Google Scholar
  38. 35.
    R. Feynman, R. Leighton, and M. Sands, Feynman Lectures on Physics, vol. 3, (Addison-Wesley, Reading, MA, 1965), chap. 1.MATHGoogle Scholar
  39. 36.
    P. Storey, S. Tan, M. Collett, and D. Walls, Nature 367, 626 (1994).ADSGoogle Scholar
  40. P. Storey, S. Tan, M. Collett, and D. Walls, Nature 375, 368 (1995).ADSGoogle Scholar
  41. 37.
    J. Arsac, Fourier Transforms and the Theory of Distributions (Prentice-Hall, Englewood Cliffs, NJ, 1966), chap. 9.Google Scholar
  42. 38.
    M. D. Scully, B. G. Englert, and H. Walther, Nature 351, 111 (1991).ADSGoogle Scholar
  43. M. D. Scully, B. G. Englert, and H. Walther, Nature 375, 367 (1995).ADSGoogle Scholar
  44. 39.
    X. Y. Zou, L. J. Wang, and L. Mandel, Phys. Rev. Lett. 67, 318 (1991).ADSGoogle Scholar
  45. L. J. Wang, X. Y. Zou, and L. Mandel, Phys. Rev. A 44, 4614 (1991).ADSGoogle Scholar
  46. 40.
    A. Ray and D. Home, Phys. Lett. A 204, 87 (1995).ADSGoogle Scholar
  47. 41.
    L. Mandel, Opt. Lett. 16, 1882 (1991).ADSGoogle Scholar
  48. 42.
    G. Jaeger, A. Shimony, and L. Vaidman, Phys. Rev. A 51, 54 (1995).ADSGoogle Scholar
  49. 43.
    G. I. Taylor, Proc. Cambridge Philos. Soc. 15, 114 (1909).Google Scholar
  50. 44.
    L. Janossy and Z. Naray, Acta Phys. Hungarica 7, 403 (1967).Google Scholar
  51. G. T. Reynolds, K. Spartahan, and D. B. Scarl, Nuov. Cim. B 61, 355 (1969).ADSGoogle Scholar
  52. 45.
    R. Loudon, Rep. Prog. Phys. 43, 913 (1980).MathSciNetADSGoogle Scholar
  53. 46.
    P. Grangier, G. Roger, and A. Aspect, Europhys. Lett. 1, 173 (1986).ADSGoogle Scholar
  54. 47.
    A. Aspect and P. Grangier, Hyp. Int. 37, 3 (1987).ADSGoogle Scholar
  55. 48.
    A. Aspect, in Sixty-Two Years of Uncertainty (A. I. Miller, ed.) (Plenum, New York, 1990), pp. 45–59.Google Scholar
  56. 49.
    P. Holland, Quantum Theory of Motion (Cambridge Univer. Press, Cambridge, UK, 1993), chap. 12.Google Scholar
  57. 50.
    T. W. Marshall and E. Santos, Europhys. Lett. 3, 293 (1987).ADSGoogle Scholar
  58. T. W. Marshall, Found. Phys. 21, 201 (1991).ADSGoogle Scholar
  59. 51.
    L. Hardy, Europhys. Lett. 15, 591 (1991).ADSGoogle Scholar
  60. 52.
    H. J. Kimble, M. Dasgenais, and L. Mandel, Phys. Rev. Lett. 39, 691 (1977).ADSGoogle Scholar
  61. 53.
    P. Ghose, D. Home, and G. S. Agarwal, Phys. Lett. A 153, 403 (1991).ADSGoogle Scholar
  62. 54.
    P. Ghose, D. Home, and G. S. Agarwal, Phys. Lett. A 168, 95 (1992).ADSGoogle Scholar
  63. 55.
    P. Ghose and D. Home, Found. Phys. 22, 1435 (1992).ADSGoogle Scholar
  64. P. Ghose and D. Home, Found. Phys. 26, 943 (1996).MathSciNetADSGoogle Scholar
  65. 56.
    D. Home, in Waves and Particles in Light and Matter (A. van der Merwe and A. Garuccio, eds.) (Plenum, New York, 1994), pp. 303–7).Google Scholar
  66. 57.
    Y. Mizobuchi and Y. Ohtake, Phys. Lett. A 168, 1 (1992).ADSGoogle Scholar
  67. 58.
    Y. Mizobuchi and Y. Ohtake, in Proc. 4th Int. Symp. Found. Quantum Mechanics in the Light of New Technology (M. Tsukada et al., eds.) (Japanese Journal of Applied Physics Publication, Tokyo, 1993).Google Scholar
  68. 59.
    M. Born and E. Wolf, Principles of Optics (Pergamon, London, 1970), pp. 41–45.Google Scholar
  69. 60.
    D. F. V. James and E. Wolf, Opt. Commun. 81, 150 (1991).ADSGoogle Scholar
  70. D. F. V. James and E. Wolf, Phys. Lett. A 157, 6 (1991).ADSGoogle Scholar
  71. 61.
    G. S. Agarwal and D. F. V. James, J. Mod. Opt. 40, 1431 (1993).ADSGoogle Scholar
  72. 62.
    G. S. Agarwal, Found. Phys. 25, 219 (1995).ADSGoogle Scholar
  73. 63.
    X. Y. Zou, T. P. Grayson, and L. Mandel, Phys. Rev. Lett. 69, 3041 (1992).ADSGoogle Scholar
  74. 64.
    H. Kaiser, R. Clothier, S. A. Werner, H. Rauch, and H. Wölwitsch, Phys. Rev. A 45, 31 (1992).ADSGoogle Scholar
  75. 65.
    H. Rauch, Phys. Lett. A 173, 240 (1993).ADSGoogle Scholar
  76. 66.
    D. L. Jacobson, S. A. Werner, and H. Rauch, Phys. Rev. A 49, 3196 (1994).ADSGoogle Scholar
  77. 67.
    D. Sen, A. N. Basu, and S. Sengupta, Helv. Phys. Acta. 67, 785 (1994).MathSciNetMATHGoogle Scholar
  78. 68.
    P. R. Holland, Quantum Theory of Motion (Cambridge Univer. Press, Cambridge, UK, 1993). section 3.9, p. 117.Google Scholar
  79. 69.
    P. R. Holland, Empty Waves in the Quantum Theory, Preprint (1995).Google Scholar
  80. 70.
    F. Selleri, Quantum Paradoxes and Physical Reality (Kluwer, Dordrecht, Netherlands, 1990), chap. 4.Google Scholar
  81. 71.
    A. Garuccio, in Waves and Particles in Light and Matter (A. van der Merwe and A. Garuccio, eds.) (Plenum, New York, 1994), pp. 37–47.Google Scholar
  82. 72.
    L. de Broglie, Current Interpretation of Wave Mechanics—A Critical Study (Else vier, Amsterdam, 1969).Google Scholar
  83. 73.
    F. Selleri, Lett. Nuav. Cim. 1, 908 (1969).Google Scholar
  84. F. Selleri, Found. Phys. 12, 1087 (1982).MathSciNetADSGoogle Scholar
  85. F. Selleri, op. cit. Ref. 70, p. 139.Google Scholar
  86. 74.
    J. R. Croca, A. Garuccio, and F. Selleri, Found. Phys. Lett. 1, 101 (1988).Google Scholar
  87. 75.
    M. Schmidt and F. Selleri, Found. Phys. Lett. 4, 1 (1991).Google Scholar
  88. 76.
    D. Bohm, Phys. Rev. 85, 180 (1952).MathSciNetADSGoogle Scholar
  89. 77.
    D. Bohm, B. J. Hiley, and P. Kaloyerou, Phys. Rep. 144, 349 (1987).MathSciNetGoogle Scholar
  90. 78.
    P. R. Holland, Quantum Theory of Motion (Cambridge Univer. Press, Cambridge, UK, 1993), chap. 12.Google Scholar
  91. P. R. Holland, Phys. Rep. 224, 95 (1993).MathSciNetADSGoogle Scholar
  92. 79.
    D. Bohm and B. J. Hiley, Undivided Universe (Routledge, London, 1993), chap. 11.Google Scholar
  93. 80.
    C. Dewdney, G. Horton, M. M. Lam, Z. Malik, and M. Schmidt, Found. Phys. 22, 1217 (1992).MathSciNetADSGoogle Scholar
  94. 81.
    L. de Broglie, Ondes électromagnétique et photons, (Gauthier-Villars, Paris, 1968).Google Scholar
  95. 82.
    L. de Broglie and J. Andrade e Silva, Phys. Rev. 172, 1284 (1968).ADSGoogle Scholar
  96. 83.
    R. L. Pfleegor and L. Mandel, Phys. Rev. 159, 1084 (1967).ADSGoogle Scholar
  97. 84.
    A. Garuccio, K. Popper, and J. P. Vigier, Phys. Lett. A 86, 397 (1981).ADSGoogle Scholar
  98. 85.
    D. F. Walls, Am. J. Phys. 45, 952 (1977).ADSGoogle Scholar
  99. 86.
    W. M. de Muynk, Epist. Lett. 28, 33 (1980).Google Scholar
  100. J. Andrade e Silva and A. Andrade e Silva, Epist. Lett. 29, 39 (1980).Google Scholar
  101. 87.
    J. R. Croca, A. Garuccio, V. L. Lepore, and R. N. Moreira, Found. Phys. Lett. 3, 557 (1990).Google Scholar
  102. 88.
    L. J. Wang, X. Y. Zou, and L. Mandel, Phys. Rev. Lett. 66, 1111 (1991).ADSGoogle Scholar
  103. 89.
    P. R. Holland and J. P. Vigier, Phys. Rev. Lett. 67, 402 (1991).ADSGoogle Scholar
  104. 90.
    J. R. Croca, A. Garuccio, V. L. Lepore, and R. N. Moreira, Phys. Rev. Lett. 68, 3813 (1992).ADSGoogle Scholar
  105. 91.
    L. J. Wang, X. Y. Zou, and L. Mandel, Phys. Rev. Lett. 68, 3814 (1992).ADSGoogle Scholar
  106. 92.
    F. Selleri, in Wave-Particle Duality (Plenum, New York, 1992).Google Scholar
  107. 93.
    F. Selleri, in Waves and Particles in Light and Matter (A. Garuccio and A. van der Merwe, eds.) (Plenum, New York, 1993).Google Scholar
  108. 94.
    R. Risco-Delgado and F. Selleri, Found. Phys. Lett. 6, 225 (1993).Google Scholar
  109. 95.
    R. J. Glauber, Phys. Rev. 130, 2529; 131, 2766 (1963).ADSGoogle Scholar
  110. 96.
    A. Garuccio, Vistas in Astronomy, 37, 217 (1993).ADSGoogle Scholar
  111. A. Garuccio, in Waves and Particles in Light and Matter (A. van der Merwe and A. Garuccio, eds.) (Plenum, New York, 1994), pp. 37–47.Google Scholar
  112. 97.
    V. L. Lepore, Phys. Rev. A 48, 111 (1993).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Dipankar Home
    • 1
  1. 1.Bose InstituteCalcuttaIndia

Personalised recommendations