Advertisement

Analysis of General Refined Petri Boxes

  • Raymond Devillers

Abstract

In previous papers [3, 1], together with E. Best, J. Hall and J. Esparza, we defined the basis of a general Petri Box Calculus (PBC). This calculus, which has been developed in the Esprit Basic Research Action DEMON, is based on a Petri net semantics and aims at easing the compositional definition of the semantics of various concurrent programming languages such as occam [15, 14, 6]. It is composed of a process algebra of Box expressions and a semantic domain of Petri Boxes.

Keywords

Recursion Operator Refinement Operator Communication Label Cardinality Problem Finite Multisets 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Best, R. Devillers and J. Esparza: General Refinement and Recursion for the Box Calculus. Hildesheimer Informatik-Bericht 26/92 (1992). An extended abstract may be found under the title “General Refinement and Recursion Operators for the Petri Box Calculus” in: Proceedings of STACS 93; P. Enjalbert, A. Finkel and K.W. Wagner (eds.). Springer-Verlag Lecture Notes in Computer Science 665, pp.130-140 (1993).Google Scholar
  2. [2]
    E. Best, J. Esparza and M. Koutny: Operational Semantics for the Box Algebra. Draft Report Universität Hildesheim (1992).Google Scholar
  3. [3]
    E. Best, R. Devillers and J. Hall: The Box Calculus: a New Causal Algebra with Multi-label Communication. Advances in Petri Nets 1992; G. Rozenberg (ed.). Springer-Verlag Lecture Notes in Computer Science Vol. 609, pp.21-69 (1992).Google Scholar
  4. [4]
    E. Best, R. Devillers, A. Kiehn and L. Pomello: Concurrent Bisimulations in Petri Nets. Acta Informatica 28, pp.231–264 (1991).MathSciNetMATHCrossRefGoogle Scholar
  5. [5]
    E. Best, C. Fernàndez: Notations and Terminology on Petri Net Theory. GMD Arbeitspapiere 195 (1986).Google Scholar
  6. [6]
    E. Best and R.P. Hopkins: B(PN)2-a Basic Petri Net Programming Notation. Proceedings PARLE-93; A. Bode, M. Reeve and G. Wolf (eds.). Springer-Verlag Lecture Notes in Computer Science 694, pp.379-390 (1993).Google Scholar
  7. [7]
    R. Devillers: Maximality Preservation and the ST-idea for Action Refinements. Advances in Petri Nets 1992; G. Rozenberg (ed.). Springer-Verlag Lecture Notes in Computer Science 609, pp.108-151 (1992).Google Scholar
  8. [8]
    R. Devillers: Construction of S-invariants an S-components for Refined Boxes. Proceedings of the 14th International Conference on Application and Theory of Petri Nets; M. Ajmone Marsan (ed.). Springer-Verlag Lecture Notes in Computer Science 691, pp.242-261 (1993).Google Scholar
  9. [9]
    R. Devillers: S-invariant Analysis of Petri Boxes. Draft Report LIT-273. Université Libre de Bruxelles (1993).Google Scholar
  10. [10]
    R. Devillers: Towards a General Relabelling Operator for the Petri Box Calculus. Draft Report LIT-274. Université Libre de Bruxelles (1993).Google Scholar
  11. [11]
    R. Devillers: Modelling Petri Boxes are not too infinite. Draft Report LIT-284. Université Libre de Bruxelles (1993).Google Scholar
  12. [12]
    U. Goltz and R.J. van Glabbeek: Refinement of Actions in Causality Based Models. Stepwise Refinement of Distributed Systems (REX Workshop 1989); J.W. de Bakker, W.-P. de Roever and G. Rozenberg (eds.). Springer-Verlag Lecture Notes in Computer Science 430, pp.267-300 (1990).Google Scholar
  13. [13]
    J. Hall: The High Level Petri Box Calculus: Basic Concepts. York Technical Report 196 (1993).Google Scholar
  14. [14]
    R.P. Hopkins, J. Hall and O. Botti: A Basic-Net Algebra for Program Semantics and its Application to occam. Advances in Petri Nets 1992; G. Rozenberg (ed.). Springer-Verlag Lecture Notes in Computer Science 609, pp.179-214 (1992).Google Scholar
  15. [15]
    D. May: occam. SIGPLAN Notices, Vol.18(4), pp.69–79 (April 1983).CrossRefGoogle Scholar
  16. [16]
    R. Milner: Communication and Concurrency. Prentice Hall (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Raymond Devillers
    • 1
  1. 1.Laboratoire d’Informatique ThéoriqueUniversité Libre de BruxellesBruxellesBelgium

Personalised recommendations