Making Argument Systems Computationally Attractive: Argument Construction and Maintenance

  • Alejandro J. García
  • Carlos I. Chesñevar
  • Guillermo R. Simari


Argumentative systems (Pollock, 1987; Vreeswijk, 1989; Prakken, 1993) are formalizations of the process of “defeasible reasoning”, i. e., reasoning to reach conclusions that could be discarded when new evidence appears. An argument for a conclusion p is a tentative piece of reasoning an agent would accept to explain p. If the agent gets new information, the conclusion p together with the argument that supported p may no longer be valid. In that way nonmonotonicity arises. The analysis of the relationships among arguments naturally captures many features of commonsense reasoning, which could be unclear or difficult to introduce in other frameworks, such as Default Logic (Reiter, 1980), Nonmonotonic Logic (McDermott & Doyle, 1980), Autoepistemic Logic (Moore, 1985) and Circumscription (McCarthy, 1980).


Atomic Formula Argument Structure Strong Rule Pruning Strategy Default Logic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. García, A.J., Chesñevar, C.I. and Simari, G.R., 1993, Bases de argumentos: su mantenimiento y revisión, in XIX Conferencia Latinoamericana de Informática, 22as. Jornadas Argentinas de Informática e Investigación Operativa.Google Scholar
  2. Lloyd, G., 1987, Foundations of Logic Programming, Springer-Verlag, 2nd. Edition.Google Scholar
  3. Loveland, D., 1978, Automated Theorem Proving: A Logical Basis, North Holland.Google Scholar
  4. McCarthy, J., 1980, Circunscription-A form of non-monotonic reasoning, Artificial Intelligence 13: 27–39.MathSciNetMATHCrossRefGoogle Scholar
  5. McDermott, D. and Doyle, J., 1980, Non-monotonic logic I, Artificial Intelligence, 13: 41–72.MathSciNetMATHCrossRefGoogle Scholar
  6. Lin, F. and Shoham, Y., 1989, Argument systems: a uniform basis for nonmonotonic reasoning, STAN-CS-89-1243, Stanford University, Department of Computer Science.Google Scholar
  7. Moore, R.C., 1985, Semantical considerations on nonmonotonic logic, in Artificial Intelligence Artificial Intelligence, 25:(1) 75–94.MATHCrossRefGoogle Scholar
  8. Pollock, J.L., 1987, Defeasible reasoning, in Cognitive Science, 11:481–518.CrossRefGoogle Scholar
  9. Poole, D.L., 1985a, On the comparison of theories: preferring the most specific explanation, in Proceedings of the Ninth International Joint Conference on Artificial Intelligence, pp. 144-147, IJCAI.Google Scholar
  10. Poole, D.L., Aleliunas, R. and Goebel, R., 1985b, THEORIST: A logical reasoning system for defaults and diagnosis, Technical Report, Departament of Computer Science, University of Waterloo, Waterloo, Canada.Google Scholar
  11. Poole, D.L., 1988, A logical framework for default reasoning, in Artificial Intelligence 36, pp. 27–47.MathSciNetMATHCrossRefGoogle Scholar
  12. Prakken, H., 1993, Logical Tools for Modelling Legal Arguments, PhD Thesis, Vrije University, Amsterdam, Holland.Google Scholar
  13. Reiter, R., 1980, A logic for default reasoning, in Artificial Intelligence, 13: 81–132.MathSciNetMATHCrossRefGoogle Scholar
  14. Simari, G.R., and Loui, R.P., 1992, A mathematical treatment of defeasible reasoning and its implementation, in Artificial Intelligence, 53: 125–157.MathSciNetMATHCrossRefGoogle Scholar
  15. Vreeswijk, G., 1991, The Feasibility of Defeat in Defeasible Reasoning, in Knowledge Representation’ 91.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Alejandro J. García
    • 1
  • Carlos I. Chesñevar
    • 1
  • Guillermo R. Simari
    • 1
  1. 1.Departamento de MatemáticaUniversidad Nacional del SurBahía BlancaArgentina

Personalised recommendations