Advertisement

Septohippocampal Cholinergic Modulation in Classical Conditioning

  • Brandon R. Ermita
  • Catherine E. Myers
  • Michael Hasselmo
  • Mark A. Gluck

Abstract

In previous papers we have investigated the functional role of the hippocampal region in learning and memory using connectionist modeling techniques to focus on behavioral processes involved in associative learning (Gluck & Myers, 1993; Myers & Gluck, 1994). Additional work has extended the model by using known neuroanatomical architecture of the hippocampal formation to ascribe specific hippocampal and entorhinal cortical functions (Myers, Gluck & Granger, 1995). These models assume that the hippocampus develops new stimulus representations that enhance the discriminability of differentially predictive cues while the entorhinal cortex develops new stimulus representations that decrease the discriminability of similarly predictive cues. In subsequent work, (Myers, et al., 1996) by incorporating the ideas proposed by Hasselmo and Schnell (1994), the model has been extended to account for the physiologically-based effects of septohippocampal neuromodulation on associative learning. The modulation of hippocampal processing states may be controlled by cholinergic input from the basal forebrain, thus allowing for the hippocampus to be shifted between states of information storage and recall. By manipulating the learning rate of the hippocampal component, the model is useful in understanding the role of disruption of hippocampal processes by cholinergic blockade. Hippocampal computation may be more directly assessed through the application of the generalized Gluck & Myers model on both hippocampal-region mediated (delay conditioning) and hippocampal-region dependent (latent inhibition) associative learning tasks.

Keywords

Latent Inhibition Classical Conditioning Hippocampal Lesion Cortical Network Conditioned Eyeblink 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berger, T., Alger, B., & Thompson, R. (1976). Neuronal substrate of classical conditioning in the hippocampus. 92(4238), 483–485.Google Scholar
  2. Berger, T., & Orr, W. (1983). Hippocampectomy selectively disrupts discrimination reversal learning of the rabbit nictitating membrane response.Behavioral Brain Research,S. 49–68.Google Scholar
  3. Berry, S., & Thompson, R. (1979). Medial septal lesions retard classical conditioning of the nictitating membrane response in rabbits.Science,205, 209–211.PubMedCrossRefGoogle Scholar
  4. Gabrieli, J., McGlinchey-Berroth, R.. Carrillo, M., Gluck, M.. Cermack, L., & Disterhoft, J. (1995). Intact delayeyeblink classical conditioning in amnesia.Behavioral Neuroscience. 109 (5), 819–827.PubMedCrossRefGoogle Scholar
  5. Gluck, M., & Myers, C. (1993). Hippocampal mediation of stimulus representation: A computational theory.Hippocampus, 3, 491–516.PubMedCrossRefGoogle Scholar
  6. Gluck, M., Myers, C., Goebel, J. (1994). A computational perspective on dissociating hippocampal and entorhinal function (Response to Eichenbaum, et al.).Behavioral and Brain Sciences 17. 478 479.Google Scholar
  7. Gormezano, I., Kehoe. E. J., & Marshall, 13. S. (1983). Twenty years of classical conditioning research with the rabbit.Progress in Ps_vehohiologeand Physiological Psychology, 111, 197–275.Google Scholar
  8. Hasselmo, M., & Schnell. E. (1994). Feedback regulation of cholinergie modulation and hippocampal memory function. InProceedings of World Congress on,Veural Netsrorl:s 2 (pp. 729–734). San Diego: INNS Press.Google Scholar
  9. Hasselmo, M., Schnell, E., & Barkai, E. (1995). Learning and recall at excitatory recurrent synapses and cholinergic modulation in hippocampal region CA3. Journal of,eurosoiernce. 15 (7), 5249–5262.Google Scholar
  10. Hinton, G. (1989). Connectionist learning procedures.Artificial Intelligence, 40, 185–234.CrossRefGoogle Scholar
  11. Kaye, H., & Pearce, J. (1987). Hippocampal lesions attenuate latent inhibition and the decline of the orienting response in rats.Ouarter/i Journal of Experimental Psychology, 398, 107–125.Google Scholar
  12. Lubow, R. (1973). Latent Inhibition.Psychological Bulletin. 79. 398–107.PubMedCrossRefGoogle Scholar
  13. Moore, J., Goodell, N., & Solomon. P. (1986). Central cholinergie blockade by scopolamine and habituation, classical conditioning, and latent inhibition of the rabbit’s nictitating membrane response.Physiological Psychology, 4 (3), 395–399.Google Scholar
  14. Myers, C., Ermita, B., Harris, K., Gluck, M., Hasselmo, M.., Solomon, P., Gluck, M. (1996) A computational model of the effects of septohippocampal disruption on classical eyeblink conditioning.Neuuohiologv or Learning and Memory, 51–66.Google Scholar
  15. Myers, C., Hasselmo, M., Gluck, M. (1997/submitted). Further applications of a computational model of septohippocampal cholinergie modulation. submitted to P.sychobiologv Myers, C., & Gluck. M. (1994). Context, conditioning and hippocampal re-representation. ßehavioral.Neuro.science, 108(5), 835–847.Google Scholar
  16. Myers, C., Gluck, M., & Granger, R. (1995). Dissociation of hippocampal and entorhinal function in associative learning: A computational approach.Psychobiology, 23 (2), 116–138.Google Scholar
  17. Port. R., & Patterson, M. (1984). Fimbrial lesions and sensory preconditioning.Behavioral Neuroscience, 98. 584–589.CrossRefGoogle Scholar
  18. Rescorla, R., & Wagner, A. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and non-reinforcement. In A. Black & W. Prokasy (Eds.),Classical Conditioning 11. Current Research and Theory (pp. 64–99 ). New York: Appleton-Century-Crofts.Google Scholar
  19. Rumelhart, D., Hinton, G., & Williams, R. (1986). Learning internal representations by error propagation. In D. Rumelhart & J. McClelland (Eds.),Parallel Distributed Processing: Explorations in the Microstructure of Cognition (pp. 318–362 ). Cambridge, MA: MIT Press.Google Scholar
  20. Solomon, P. (1977). Role of the hippocampus in blocking and conditioned inhibition of the rabbit’s nictitating membrane.Journal of Comparative and Physiological Psychology, 9/(2), 407–417.Google Scholar
  21. Solomon, P., & Gottfried, K. (1981). The septohippocampal cholinergie system and classical conditioning of the rabbit’s nictitating membrane response.Journal of Comparative and Physiological Psychology, 95 (2), 322–330.PubMedCrossRefGoogle Scholar
  22. Solomon, P., Groccia-Ellison, M., Flynn, D., Mirak, J., Edwards, K., Dunehew, A., & Stanton, M. (1993). Disruption of human eyeblink conditioning after central cholinergic blockade with scopolamine.Behavioral Neuroscience, 107 (2), 271–279.PubMedCrossRefGoogle Scholar
  23. Solomon, R, & Moore, J. (1975). Latent inhibition and stimulus generalization of the classically conditioned nictitating membrane response in rabbits (Oryctolagus cuniculus) following dorsal hippocampal ablation. Jour-nul of Comparative and Physiological Psychology, 89, 1192–1203.CrossRefGoogle Scholar
  24. Solomon, R, Pomerleau, D., Bennett, L., James, J.. & Morse, D. (1989). Acquisition of the classically conditioned eyeblink response in humans over the life span. Psychology and Aging, 4 (1), 34–41.PubMedCrossRefGoogle Scholar
  25. Solomon, P., Solomon, S., Van der Schaaf, E., & Perry, H. (1983). Altered activity in the hippocampus is more detrimental to classical conditioning than removing the structure.Science,220, 329–331.PubMedCrossRefGoogle Scholar
  26. Thompson, R. (1972). Sensory preconditioning. In R. Thompson & J. Voss (Eds.). Topics in Learning and PerJòrmance (pp. 105–129 ). New York: Academic Press.Google Scholar
  27. Thompson, R. (1986). The neurobiology of learning and memory.Science,233, 941–947.PubMedCrossRefGoogle Scholar
  28. Woodruff-Pak, D. (1993). Eyeblink classical conditioning in H.M.: Delay and trace paradigms. Behavioral Neuroscience, 107 (6), 911–925.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Brandon R. Ermita
    • 1
    • 3
  • Catherine E. Myers
    • 1
  • Michael Hasselmo
    • 2
  • Mark A. Gluck
    • 1
  1. 1.Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkUSA
  2. 2.Department of PsychologyHarvard UniversityCambridgeUSA
  3. 3.Center for Molecular and Behavioral NeuroscienceRutgers UniversityNewarkUSA

Personalised recommendations