Temporal Coding of Sensory Information

  • Peter A. Cariani


The neural coding problem—how populations of neurons represent and convey information—is fundamental to understanding how the brain works as an information-processing system. Three independent aspects of any time-varying signal are the physical channel through which the signal is transmitted, its internal temporal structure (e.g. its Fourier spectrum), and its absolute time of arrival. Any of these aspects of a signal can be used to convey what kind of distinction is being conveyed, be it a pitch, or a color, or a smell. Correspondingly, neural spike codes can be classified into “connectivity-based codes” in which the meaning of a spike train depends upon which specific neuron produced it (e.g. “place” or “labelled line” codes) and “temporal codes” in which meaning depends upon specific timings of spikes. “Temporal codes” can be further subdivided into “time-of-arrival codes” (e.g. latency and synchrony codes) vs. “temporal pattern codes” (e.g. interspike interval and higher-order pattern codes).6,53 Since these aspects of spike codes are complementary, combinations of these primitive coding strategies are also possible (Fig. 1). While some evidence for temporal coding exists in each sensory modality, relatively few attempts have been made to gather together existing physiological and psychophysical evidence to search for common temporal coding strategies.2 5,6,10.48,49,53.60,67,76


Olfactory Bulb Spike Train Auditory Nerve Interaural Time Difference Neural Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bialck, W., F. Rieke, R.R. van Stevenink and W. de Ruyter, D., 1991, Reading a neural code, Science 252 (28 June): 1854–1856.Google Scholar
  2. 2.
    Boring, E.G. 1942, Sensation and Perception in the History of Experimental Ps_rchologr. Appleton-Century-Crofts. New York.Google Scholar
  3. 3.
    Bower. T.G.R., 1974. The evolution of sensory systems, in: Perception: Essays in Honor of James.1. Gibson, ( R. B. MacLeod and H. Pick Jr., ed.), Cornell University Press. Ithaca.Google Scholar
  4. 4.
    Brugge_.I.F., R.A. Reale and J.E. Hind, 1996, The structure of spatial receptive fields of neurons in primary auditory cortex of the cat, J. Neurosci. 16 (14): 4420–4437.Google Scholar
  5. 5.
    Bullock, T.H., 1967, Signals and neural coding, in: The Neuro.ceiences: A Staah’ Program, (G. C. Quarton. T. Melnechuck and F. O. Schmitt, ed.), Rockefeller University Press, New York.Google Scholar
  6. 6.
    Cariani, P., 1995, As if time really mattered: temporal strategies for neural coding of sensory information. Communication and Cognition - Artificial Intelligence (CC-AI) 12(1–2): 161–229. Preprinted in: Origins: Brain and Self=Organization, (Pribram. K., ed.), Lawrence Erlbaum, Hillsdale, NJ.Google Scholar
  7. 7.
    Cariani, P., 1996, Temporal coding of musical form, Proceedings, International Music Perception Conference. Montreal. August, /996.: 425–430.Google Scholar
  8. 8.
    Cariani, P.A. and B. Delgutte, 1996, Neural correlates of the pitch of complex tones. I. Pitch and pitch salience., J. Neurophvsiol. 76 (3): 1698–1716.Google Scholar
  9. 9.
    Cariani, P.A. and B. Delgutte, 1996, Neural correlates of the pitch of complex tones. 11. Pitch shift, pitch ambiguity, phase-invariance, pitch circularity, and the dominance region for pitch, J. Nearophvsiol. 76 (3): 1717–1734.Google Scholar
  10. 10.
    Carr, C.E., 1993, Processing of temporal information in the brain, Annu. Rev. Neurosci. 16: 223–243.PubMedCrossRefGoogle Scholar
  11. 11.
    Carr, C.E. and M. Konishi, 1990, A circuit for detection of interaural time differences in the brain stem of the barn owl, J. Neuroscience 10 (10): 3227–3246.Google Scholar
  12. 12.
    Casseday, J.H. and E. Covey, 1987, Central auditory pathways in directional hearing, in: Directional Hearing. ( W. A. Yost and G. Gourevitch, ed.), Springer Verlag, New York.Google Scholar
  13. 13.
    Chung, S.H.. S.A. Raymond and J.Y. Lettvin, 1970, Multiple meaning in single visual units, Brain Behav Evol 3: 72–101.PubMedCrossRefGoogle Scholar
  14. 14.
    Covey, E. Temporal Neural Coding in Gustation. Ph.D., Duke University (1980)Google Scholar
  15. 15.
    de Valois, R.L. and K.K. de Valois. 1990, Spatial Vision, Oxford University Press, Oxford.Google Scholar
  16. 16.
    Di Lorenzo, P.M. and G.S. Hecht, 1993, Perceptual consequences of electrical stimulation in the gustatory system, Behavioral Neuroscience 107: 130–138.PubMedCrossRefGoogle Scholar
  17. 17.
    Eddington, D.K., W.H. Dobelle, D.E. Brackman, M.G. Mladejovsky and J. Parkin, 1978, Place and periodicity pitch by stimulation of multiple scala tympani electrodes in deaf volunteers. Trans. Am. Soc. Artif Intern. Organs 24: 1–5.PubMedGoogle Scholar
  18. 18.
    Egelhaaf, M. and A. Borst, 1993, A look into the cockpit of the tly: visual orientation, algorithms, and identified neurons, J. Neurosci. 13 (11): 4563–4574.PubMedGoogle Scholar
  19. 19.
    Emmers, R. 1981, Pain: A Spike-Interval Coded Message in the Brain, Raven Press, New York.Google Scholar
  20. 20.
    Festinger, L., M.R. Allyn and C.W. White, 1971, The perception of color with achromatic stimulation, Vision Res. 11: 591–612.PubMedCrossRefGoogle Scholar
  21. 21.
    Gesteland, R.C., J.Y. Lettvin and W.H. Pitts, 1965. Chemical transmission in the nose of the frog. J. Phvsiol. 181: 525–559.Google Scholar
  22. 22.
    Gesteland, R.C., J.Y. Lettvin, W.H. Pitts and S.H. Chung, 1968, A code in the nose, in: Cybernetic Problems in Bionics, ( H. L. Oestereicher and D. R. Moore, ed.), Gordon and Breach, New York.Google Scholar
  23. 23.
    Hammett, S.T. and A.T. Smith, 1994, Temporal beats in the human visual system. Vision Res 34 (21): 2833–2840.PubMedCrossRefGoogle Scholar
  24. 24.
    Heiligenberg, W., 1994, The coding and processing of temporal information in the electrosensory system of the fish, in: Temporal coding in the brain, ( G. Buzaki, R. Llinas. W. Singer, A. Berthoz and Y. Christen, ed.), Springer-Verlag, Berlin.Google Scholar
  25. 25.
    Hopfield, J.J., 1995, Pattern recognition computation using action potential timing for stimulus representation, Nature 376: 33–-36.Google Scholar
  26. 26.
    Jenson, O. and J.E. Lisman, 1996, Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells, Learning, and Memory 3: 279–287.CrossRefGoogle Scholar
  27. 27.
    Kauer, J.S., 1974, Response patterns of amphibian olfactory bulb neuones to odour stimulation, J. Phi:iol. 243: 695–715.Google Scholar
  28. 28.
    Kauer, J.S., 1990, Temporal patterns of membrane potential in the olfactory bulb observed with intracellular recording and voltage-dye imaging: early hyperpolarization. in: Chemosensory Information Processing, ( D. Schild, ed.), Springer Verlag, Berlin.Google Scholar
  29. 29.
    Kaufman, L. 1974, Sight and Mind: An Introduction to Visual Perception, Oxford University Press, New York.Google Scholar
  30. 30.
    Kozak, W.M. and H.J. Reitboeck, 1974, Color-dependent distribution of spikes in single optic tract fibers of the cat, Vision Research 14: 405–419.PubMedCrossRefGoogle Scholar
  31. 31.
    Kozak, W.M., H.J. Reitboeck and F. Meno, 1989, Subjective color sensations elicited by moving patterns: effect of luminance, in: Seeing Contour and Colour: ( J. J. Kulikowski, Dickenson, C.M., ed.), Pergamon Press, New York.Google Scholar
  32. 32.
    Kreiter, A. and W. Singer, 1996, Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey, J. News sci. 16 (7): 2381–2396.Google Scholar
  33. 33.
    Kuwada, S. and T.C.T. Yin, 1987, Physiological studies of directional hearing, in: Directional Hearing, ( W. A. Yost and G. Gourevitch, ed.), Springer Verlag, New York.Google Scholar
  34. 34.
    Laurent, G. and H. Davidowitz, 1994, Encoding of olfactory information with oscillating neural assemblies, Science 265 (23 Sept): 1872–1875.PubMedCrossRefGoogle Scholar
  35. 35.
    Lestienne, R., 1996, Determination of the precision of spike timing in the visual cortex of anesthetized cats, Biol. Cybern. 74: 55–61.PubMedCrossRefGoogle Scholar
  36. 36.
    Lestienne, R., E. Gary-Bobo, J. Przybyslawski, P. Saillour and M. Imbert, 1990, Temporal correlations in modulated evoked responses in the visual cortical cells of the cat, Biol. Cybern. 62: 425–440.PubMedCrossRefGoogle Scholar
  37. 37.
    Lestienne, R. and B.L. Strehler, 1988, Differences between monkey visual cortex cells in triplet and ghost doublet informational symbols relationships, Biol. Cybern. 59: 337–-352.Google Scholar
  38. 38.
    Licklider, J.C.R., 1951, A duplex theory of pitch perception, Experientia VII(4): 128–134.Google Scholar
  39. 39.
    Licklider, J.C.R., 1959, Three auditory theories, in: Psychology: A Study of a Science. Study Conceptual and Systematic. ( S. Koch, ed.), McGraw-Hill, New York.Google Scholar
  40. 40.
    Macrides, F., 1977, Dynamic aspects of central olfactory processing, in: Chemical Signals in Vertebrates, ( D. M. Schwartze and M. M. Mozell, ed.), Plenum, New York.Google Scholar
  41. 41.
    Macrides, F. and S.L. Chorover, 1972, Olfactory bulb units: activity correlated with inhalation cycles and odor quality, Science 175 (7 January): 84–86.PubMedCrossRefGoogle Scholar
  42. 42.
    Marion-Poll, F. and T.R. Tobin, 1992, Temporal coding of pheromone pulses and trains in Manduca sexta, J Comp Phvsiol A 171: 505–5I2.Google Scholar
  43. 43.
    McKay, C.M., H.J. McDermott and G.M. Clark, 1994, Pitch percepts associated with amplitude-modulated current pulse trains in cochlear implantees, J. Acoust. Soc. Am. 96 (5): 2664–2673.PubMedCrossRefGoogle Scholar
  44. 44.
    Meddis, R. and M.J. Hewitt, 1991, Virtual pitch and phase sensitivity of a computer model of the auditory periphery. I. Pitch identification, J. Acoust. Soc. Am. 89 (6): 2866–2882.CrossRefGoogle Scholar
  45. 45.
    Meredith. M. and D.G. Moulton, 1978, Patterned response to odor in single neurones of goldfish olfactory bulb: influence of odor quality and other stimulus parameters, J. Gen. Physiol. 71: 615–643.CrossRefGoogle Scholar
  46. 46.
    Middlebrooks, J.C., A.E. Clock, L. Xu and D.M. Green, 1994, A panoramic code for sound location by cortical neurons, Science 264: 842–844.PubMedCrossRefGoogle Scholar
  47. 47.
    Morley, J.W., J.S. Archer, D.G. Ferrington, M.J. Rowe and A.B. Turman, 1990, Neural coding of complex tactile vibration, in: Information Processing in Mammalian Auditor’ and Tactile Systems, ed.), Alan R. Liss, IncGoogle Scholar
  48. 48.
    Morrell, F., 1967, Electrical signs of sensory coding, in: The Neurosciences: A Study Program. ( G. C. Quarton, T. Melnechuck and F. O. Schmitt. ed.). Rockefeller University Press, New York.Google Scholar
  49. 49.
    Mountcastle, V., 1967, The problem of sensing and the neural coding of sensory events, in: The Neurosciences: A Study Program, ( G. C. Quarton, Melnechuk, T., and Schmitt, F.O., ed.), Rockefeller University Press, New York.Google Scholar
  50. 50.
    Mountcastle, V.. 1993, Temporal order determinants in a somatosthetic frequency discrimination: sequential order coding, Annals New York Acad. Sci. 682: 151–170.CrossRefGoogle Scholar
  51. 51.
    Pabst, M.. H.J. Reitboeck and R. Eckhorn, 1989, A model of preattentive texture region definition based on texture analysis, in: Models of Brain Function, ( R. M. J. Cotterill, ed.), Cambridge University Press, Cambridge.Google Scholar
  52. 52.
    Palmer, A.R., 1992, Segregation of the responses to paired vowels in the auditory nerve of the guinea pig using autocorrelation, in: The Auditory Processing of Speech, (S. M.E.H., ed.), Mouton de Gruyter, Berlin.Google Scholar
  53. 53.
    Perkell, D.H. and T.H. Bullock. Neural Coding. (1968)Google Scholar
  54. 54.
    Poggio, T. and W. Reichardt, 1976, Visual control of orientation behaviour in the fly. Part I1. Towards the underlying neural interactions, Quart. Rev: Biophys. 9 (3): 377–438.CrossRefGoogle Scholar
  55. 55.
    Pollen, D.A., J.P. Gaska and L.D. Jacobson, 1989, Physiological constraints on models of visual cortical function, in: Models of Brain Function, ( R. M. J. Cotterill, ed.), Cambridge University Press, Cambridge.Google Scholar
  56. 56.
    Reichardt, W., 1961, Autocorrelation, a principle for the evaluation of sensory information by the central nervous system, in: Sensory Communication, ( W. A. Rosenblith. ed.), MIT Press/John Wiley, New York.Google Scholar
  57. 57.
    Reitboeck, H.J., M. Pabst and R. Eckhorn, 1988, Texture description in the time domain, in: Computer Simulation in Brain Science, ( R. M. J. Cotterill, ed.), Cambridge University Press, Cambridge, England.Google Scholar
  58. 58.
    Rhode, W.S., 1995, Interspike intervals as correlates of periodicity pitch in cat cochlear nucleus, J. Acoust. Soc. Am. 97 (4): 2414–2429.PubMedCrossRefGoogle Scholar
  59. 59.
    Richmond, B.J., L.M. Optican and T.J. Gawne, 1989, Neurons use multiple messages encoded in temporally modulated spike trains to represent pictures, in: Seeing Contour and Colour: (J. J. Kulikowski and C. M. Dickenson. ed.). Pergamon Press, New York.Google Scholar
  60. 60.
    Rieke, F., D. Worland, R. de Ruyter van Steveninek and W. Bialek. 1997, Spikes: Exploring the Neural Code. MIT Press, Cambridge.Google Scholar
  61. 61.
    Rowe, M.. 1990. Impulse patterning in central neurons for vibrotactile coding, in: Information Processing in Mammalian Auditory and Tactile Systems, ed.), Alan R. Liss, IncGoogle Scholar
  62. 62.
    Sheppard,.1.J. 1968, Human Color Perception: A Critical Study of the Experimental Foundation, American Elsevier, New York.Google Scholar
  63. 63.
    Simmons, A.M. and M. Ferragamo, 1993, Periodicity extraction in the anuran auditory nerve, J. Comp. Physiol. A 172: 57–69.PubMedCrossRefGoogle Scholar
  64. 64.
    Simmons, J.A., 1987. Directional hearing and sound localization in echolocating animals, in: Directional Hearing. ( W. A. Yost and G. Gourevitch, ed.), Springer Verlag, New York.Google Scholar
  65. 65.
    Simmons, J.A., M. Ferragamo, C. Moss, F., S.B. Stevenson and R.A. Altes, 1990, Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicu.s firscus., J. Comp. Physiol. A 167: 589–616.Google Scholar
  66. 66.
    Slaney, M. and R.F. Lyon, 1993, On the importance of time - a temporal representation of sound, in: Visual Representations of Speech Signals, ( M. Cooke, S. Beet and M. Crawford, ed.), John Wiley, New York.Google Scholar
  67. 67.
    Uttal, W.R. 1973, The Psychobiology of Sensory Coding, Harper and Row, New York.Google Scholar
  68. 68.
    Uttal, W.R. 1975, An Autocorrelation Theory of Form Detection, Wiley, New York.Google Scholar
  69. 69.
    Uttal, W.R. 1988, On Seeing Forms, Lawrence Erlbaum, Hillsdale, NJ.Google Scholar
  70. 70.
    Victor, J.D., K. Purpura, E. Katz and B. Mao, 1994, Population encoding of spatial frequency, orientation, and color in Macaque VI, J. Nem’ophysiol. 72 (5): 2151–2166.Google Scholar
  71. 71.
    von Bekesy, G., 1955, Human skin perception of travelling waves similar to those on the cochlea, J. Acoust. Soc. Am. 27 (5): 830–841.CrossRefGoogle Scholar
  72. 72.
    von Bekesy, G., 1962, Synchrony between nervous discharges and periodic stimuli in hearing and on the skin, Annals of Otology, Rhinology, and Laryngology 71 (3): 678–692.Google Scholar
  73. 73.
    von Bekesy, G., 1963, Interaction of paired sensory stimuli and conduction in peripheral nerves, Journal of Applied Physiology 18 (6): 1276–1284.Google Scholar
  74. 74.
    von Bekesy, G., 1964, Olfactory analogue to directional hearing, Journal of.4pplied Physiology 19 (3): 369–373.Google Scholar
  75. 75.
    von Bekesy, G., 1964, Rythmical variations accompanying gustatory stimulation observed by means of localization phenomena, Journal of General Physiology 47 (5): 809–825.CrossRefGoogle Scholar
  76. 76.
    Wasserman, G.S., 1992, Isomorphism, task dependence, and the multiple meaning theory of neural coding, Biol. Signals 1: 117–142.PubMedCrossRefGoogle Scholar
  77. 77.
    Young, R.A., 1977, Some observations on temporal coding of color vision: psychophysical results, Vision Research 17: 957–965.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Peter A. Cariani
    • 1
  1. 1.Eaton Peabody LaboratoryMassachusetts Eye & Ear InfirmaryBostonUSA

Personalised recommendations