A Simple Model for Development and Function of Long-Range Connections in Neocortex

  • K. Pawelzik
  • T. Sejnowski


We present a model for the development of long-range horizontal connections in cortex. Fixed short-range interactions with local excitatory feedback and an inhibitory surround induce localized attractors (‘activity blobs’) that depend sensitively on small variations of the input. This provides the basic mechanism for the putative role of the long-range horizontal connections: to switch between different attractors and to organize rapidly the grouping of distant neurons. We show that Hebbian adaptation of sparse long-range horizontal connections under these conditions is sufficient to break the initial symmetry of homogeneous connectivity. This can induce a strong dependency of the local responses on the input from outside the classical receptive fields. This grouping mechanism may explain a wide range of physiological and psychophysical observations.


Visual Cortex Primary Visual Cortex Localize Attractor Local Circuit Orientation Tuning 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. Malach, Y. Amir, M. Harel, and A. Grinvald, (1993) Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. PNAS 90, pp 10469- l 0473, 1993.Google Scholar
  2. [2]
    D. Fitzpatrick, (1995) The organization of local circuits in tree shrew striate cortex, Cold Spring Harbour Symposium Proceedings.Google Scholar
  3. [3]
    K. E. Schmidt, S. Löwel, R. Goebel, W. Singer, (1995) Perceptional grouping criterion of colinearity is reflected by anisotropic long range tangential connections in cortex, submitted.Google Scholar
  4. [4]
    J.J. Knierim and D.C. van Essen, (1992) Neuronal responses to static texture patterns in area VI of the alert macaque monkey, Jour. Neurophys. 67, pp 961–980.Google Scholar
  5. [5]
    A.M. Sillito, K.L. Grieve, H.E. Jones, J. Cudeiro, J. Davis, (1995) Visual cortical mechanisms detecting focal discontinuities, Nature 378. 492–496.PubMedCrossRefGoogle Scholar
  6. [6]
    M. Weliky, K. Kandler, D. Fitzpatrick, L.C. Katz. (1995) Visual cortical excitation and inhibition: common relationship to orientation columns, preprint.Google Scholar
  7. [71.
    U. Polat, D. Sagi, (1995) The architecture of perceptual spatial interactions, Vision Res. 34, pp 73–78.CrossRefGoogle Scholar
  8. [8]
    A. Das, C.D. Gilbert, (1995) Long-range horizontal connections and their role in cortical reorganization revealed bu optical recording of cat primary visual cortex, Nature 375, pp 780–784.PubMedCrossRefGoogle Scholar
  9. [9]
    D.-S. Kim, T. Bonhoeffer, (1994) Reverse occlusion leads to a precise restoration of orientation preference maps in visual cortex, Nature 370, pp 370–372.PubMedCrossRefGoogle Scholar
  10. [10]
    I. Gödecke, T. Bonhoeffer, (1996) Development of identical orientation maps for two eyes without common visual experience. Nature 379, pp 251–254.PubMedCrossRefGoogle Scholar
  11. [I l]
    H.R. Wilson, J.D. Cowan, A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue, Kybernetik 15, 55–80 (1973).CrossRefGoogle Scholar
  12. D.J. Willshaw, C. von der Malsburg, How patterned neural connections can be set up by self-organization, Proc. R. Soc. London B, 194:431–445, 1976.Google Scholar
  13. [13]
    T. Kohonen, Self-organized formation of topologically correct feature maps, Biol. Cybern. 43, 59–69, 1982.CrossRefGoogle Scholar
  14. [14]
    R. Ben-Yishai, R. Lev Bar-Or, and H. Sompolinsky. (1995) Theory of orientation tuning in visual cortex, PNAS 92, pp 3844–3848.PubMedCrossRefGoogle Scholar
  15. [15]
    M. Tsodyks and T. Sejnowski, (1995) Associate memory and hippocampal place cells, Internat. Jour. Neur. Sys., in press.Google Scholar
  16. [16]
    M. Stemmler,M. Usher, and E. Niebur, (1995) Lateral interactions in primary visual cortex: A model bridging physiology and psychophysics. Science 269: 1877–1880.Google Scholar
  17. [17]
    D. Sommers, S.B. Nelson, and M. Sur, (1995) An emergent model of orientation selectivity in cat visual cortical simple cells, Jour. Neurosci. 15, 5448–5465.Google Scholar
  18. [18]
    L.J. Toth, D.C. Sommers, S. Chenchal Rao, E.V. Todorov, D-S. Kim, S.B. Nelson, A.G. Siapas, M. Sur, (1995) Dyamic regulation of activity in visual cortex by long-range horizontal connections, preprint.Google Scholar
  19. [19]
    F. Wolf, H.-U. Bauer, K. Pawelzik and T. Geisel, Organization of the visual cortex, Nature 382, pp 306–307.Google Scholar
  20. [20]
    K. Pawelzik, U. Ernst, T. Geisel, Orientation contrast sensitivity from long-range interactions in visual cortex, NIPS96, in the press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • K. Pawelzik
    • 1
  • T. Sejnowski
    • 2
  1. 1.Institut f. Theor. PhysikFrankfurtGermany
  2. 2.The Salk Institute for Biological StudiesCNLSan DiegoUSA

Personalised recommendations