A Model of Position-Invariant, Optic Flow Pattern-Selective Cells

  • Robert I. Pitts
  • V. Sundareswaran
  • Lucia M. Vaina


Two apparently inconsistent proposals for the functionality of MSTd cells exist, based either on optic flow patterns being represented by motion components 2–4, such as translation, expansion/contraction and rotation, or by a continuum of motion patterns that includes spirals6. A model, consisting of excitatory and inhibitory subunits, has been proposed3 to support the component view. Here, we used a neural network to show that a model of this type can be selective to the continuum of patterns6. We extended this model by adding inhibitory connections between units to account for the reported6 position-invariant characteristics of MSTd cells.


Receptive Field Optic Flow Local Motion Prefer Pattern Spiral Pattern 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Beardsley, S. A., Vaina, L. M. and Poggio, T. The development of optic flow selectivity in MSTd neurons using backpropagation networks. Soc. Neurosci. Abstr 22, 1619 (1996).Google Scholar
  2. [2]
    Duffy, C. J. and Wurtz, R. H. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. J. Neurophysiol. 65, 1329–1345 (1991).PubMedGoogle Scholar
  3. [3]
    Duffy, C. J. and Wurtz, R. H. Sensitivity of MST neurons to optic flow stimuli. Il. Mechanisms of response selectivity revealed by small-field stimuli. J. Neurophysiol. 65, 1346–1359 (1991).PubMedGoogle Scholar
  4. [4]
    Duffy, C. J. and Wurtz, R. H. Response of monkey MST neurons to optic flow stimuli with shifted centers of motion. J. Neurosci. 15, 5192–5208 (1995).PubMedGoogle Scholar
  5. [5]
    Duffy, C. J. and Wurtz, R. H. Personal communication.Google Scholar
  6. [6]
    Graziano, M. S. A., Andersen, R. A., and Snowden, R. J. Tuning of MST neurons to spiral motion. J. Neu osci. 14, 54–67 (1994).Google Scholar
  7. [7]
    Lappe, M. and Rauschecker, J. P. A neural network for the processing of optic flow from ego-motion in man and higher mammals. Neural Comp. 5, 374–391 (1993).CrossRefGoogle Scholar
  8. [8]
    Morrone, M. C., Burr, D. C., and Vaina, L. M. Two stages of visual processing for radial and circular motion. Nature. 376, 507–509 (1995).PubMedCrossRefGoogle Scholar
  9. [9]
    Pitts, R. I. and Vaina, L. M. A computational model of MSTd neurons sensitive to optic flow patterns. (Submitted).Google Scholar
  10. [10]
    Saito, H., Yukie, M., Tanaka, K., Hikosaka, K., Fukada, Y., and Iwai, E. Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci. 6, 145–157 (1986).PubMedGoogle Scholar
  11. [11]
    Wang, R. A simple competitive account of some response properties of visual neurons in area MSTd. Neural Comp. 7, 290–306 (1995).CrossRefGoogle Scholar
  12. [12]
    Zhang, K., Sereno, M. 1., and Sereno, M. E. Emergence of position-independent detectors of sense of rotation and dilation with hebbian learning: an analysis. Neural Comp. 5, 597–612 (1993).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Robert I. Pitts
    • 1
    • 2
  • V. Sundareswaran
    • 2
  • Lucia M. Vaina
    • 2
  1. 1.Department of Computer ScienceBoston UniversityBostonUSA
  2. 2.Brain and Vision Research Laboratory Department of Biomedical EngineeringBoston UniversityBoston

Personalised recommendations