Advertisement

Effects of a Diffusing Messenger: Learning Temporal Correlations

  • Bart Krekelberg
  • John G. Taylor

Abstract

The neural messenger nitric oxide (NO) could radically alter our view of information processing in the central nervous system. Unlike ordinary neurotransmitters, NO is not confined to transporting messages across the synaptic cleft. Instead, due to its small size and long persistence in the extracellular fluid, it can convey information across considerable spatial (17μm) and temporal (4–5s) gaps [15]. In previous work we discussed the possible computational role of such a diffusing messenger in the development of cortical maps in the early stages of development [9]. Elsewhere, we briefly discussed the possible consequences of the temporal persistence of NO [8]; the current work is an extension of those results.

Keywords

Nitric Oxide Memory Trace Interstimulus Interval Orientation Selectivity Lateral Connection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Albus and W. Wolf. J. Physiol., 348: 153–185, 1984.PubMedGoogle Scholar
  2. [2]
    E. Callaway and L. Katz. J. Neurosci., 10: 1134–1153, 1990.PubMedGoogle Scholar
  3. [3]
    J. C. Durack and L. C. Katz. Cerebral Cortex, 6: 178–183, 1996.PubMedCrossRefGoogle Scholar
  4. [4]
    D. Fitzpatrick. Cerebral Cortex, 1996.Google Scholar
  5. [5]
    P. Földiâk. Neural Comp., 3: 194–200, 1991.CrossRefGoogle Scholar
  6. [6]
    C. D. Gilbert and T. N. Wiesel. Nature, 280: 120–125, 1979.PubMedCrossRefGoogle Scholar
  7. [7]
    C. D. Gilbert and T. N. Wiesel. J. Neurosci., 9: 2432–2442, 1989.PubMedGoogle Scholar
  8. [8]
    B. Krekelberg and J. G. Taylor. Neural Networks World, 6: 185–189, 1996.Google Scholar
  9. [9]
    B. Krekelberg and J. G. Taylor. Network, 8: 1–16, 1997.CrossRefGoogle Scholar
  10. [10]
    K. E. Martin and J. A. Marshall. Neural Information Processing Systems, 5: 417–424, 1993.Google Scholar
  11. [11]
    D. Y. Ts’o, C. D. Gilbert, and T. N. Wiesel. J. Neurosci., 6: 1160–1170, 1986.PubMedGoogle Scholar
  12. [12]
    J. M. Vanderkooi et al. Biochimica et Biophysica Acta, 1207: 249–254, 1994.PubMedCrossRefGoogle Scholar
  13. [13]
    M. Weliky, K. Kandler, D. Fitzpatrick, and L. C. Katz. Neuron, 15: 541–552, 1996.CrossRefGoogle Scholar
  14. [14]
    T. Wiesel and D. Hubel. J. Comp. Neural., 158: 307–318, 1974.CrossRefGoogle Scholar
  15. [15]
    J. Wood and J. Garthwaite. Neuropharmacology, 33: 1235–1244, 1994.PubMedCrossRefGoogle Scholar
  16. [16]
    M. Zhuo, E. Kandel, and R. Hawkins. Neuroreport, 5: 1033–1036, 1994.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Bart Krekelberg
    • 1
  • John G. Taylor
    • 1
  1. 1.Centre for Neural NetworksKing’s College LondonLondonUK

Personalised recommendations