Advertisement

The (Non-Iterative) Partial Differential Equation Method: Application to Electron-Molecule Scattering

  • A. Temkin
  • C. A. Weatherford

Abstract

In this article, we will present a brief but, hopefully, logically consistent precis of the non-iterative partial differential equation (PDE) approach to electron-molecule scattering. Finer details of the method may be found in articles to which we shall refer.

Keywords

Partial Differential Equation Polarization Potential Hybrid Theory Internuclear Axis Partial Differential Equation Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Temkin, “Nonadiabatic Theory of the Scattering of Electrons from Atomic Hydrogen,” Phys. Rev. 126:130(1962).MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    A.K. Bhatia and A. Temkin, “Symmetric Euler Angle Decomposition of the 2-Elcctron Fixed Nucleus Problem,” Rev. Mod. Phys. 36:1050(1904).ADSCrossRefGoogle Scholar
  3. 3.
    A. Temkin and E.C. Sullivan, “Nonadiabatic Theory of Electron-Hydrogen Scattering, Part II,” NASA Technical Note D-1702, (1963).Google Scholar
  4. 4.
    N. Chandra and A. Temkin, “Hybrid theory and calculation of eN 2 scattering,” Phys. Rev. A 13:188(1976); A. Temkin, PDE approach to hybrid theory of e-molecule scattering, in: “ Symposium on Electron-Molecule Collisions,” I. Shimamura and M. Matsuzawa, eds., U. of Tokyo, Tokyo (1979).ADSCrossRefGoogle Scholar
  5. 5.
    E.C. Sullivan and A. Temkin, “A Non-iterative Method for Solving PDE’s Arising in Electron Scattering,” Comp. Phys. Comm. 25:97(1982).ADSCrossRefGoogle Scholar
  6. 6.
    C.A. Weatherford, K. Onda, and A. Temkin, “Inclusion of exact exchange in the non-iterative PDE method,” Phys. Rev. A 31:3620(1985).ADSCrossRefGoogle Scholar
  7. 7.
    A. Temkin, C.A. Weatherford, and E.C. Sullivan, “Extension of the PDE Method to 3 Dimensions: Application to e-Molecule Scattering,” A.I.P. Conf. Proc. 204 (Amer. Inst. Phys., New York, 1990) pp. 133–139.CrossRefGoogle Scholar
  8. 8.
    E.C. Sullivan and A. Temkin, “Further Developments in the Non-iterative Method of Solving PDE’s in Electron Scattering,” Comp. Phys. Comm. 71:319(1992).ADSCrossRefGoogle Scholar
  9. 9.
    A. Temkin, “Polarization and Exchange Effects in the Scattering of Electrons from Atoms,” Phys. Rev.107:1004(1957).MathSciNetADSMATHCrossRefGoogle Scholar
  10. 10.
    K. Onda and A. Temkin, “Calculation of the polarization potential for eN 2 collisions,” Phys. Rev. 28:621(1983).ADSCrossRefGoogle Scholar
  11. 11.
    P.G. Burke and N. Chandra, “Electron-Molecule Interactions III: eN 2 Scattering,” J. Phys. B 5:1696(1973).ADSCrossRefGoogle Scholar
  12. 12.
    C.A. Weatherford and A. Temkin, Very low energy e-N2 scattering and interim hybrid calculations of the IIg resonance, in: “Electron-Molecule Scattering and Photoionization,” P.G. Burke and J.B. West, eds., Plenum, N.Y. and London (1988).Google Scholar
  13. 13.
    C.A. Weatherford, F.B. Brown, and A. Temkin, “Inclusion of electron correlation for the target wave function in low-to intermediate-energy eN 2 scattering,” Phys. Rev. A 35:4561(1987).ADSCrossRefGoogle Scholar
  14. 14.
    C.A. Weatherford, K. Onda, and A. Temkin, “Inclusion of exact exchange in PDE method: application to e − N 2” Phys. Rev. A 31:3620(1985).ADSCrossRefGoogle Scholar
  15. 15.
    N.T. Padial and D.W. Norcross, “Parameter-free model of the correlation-polarization potential for electron-molecule collisions,” Phys. Rev. A 29:1742(1984).ADSCrossRefGoogle Scholar
  16. 16.
    M.A. Morrison, B.C. Saha, and T.L. Gibson, “Electron-N2 scattering with a parameter-free model polarization potential,” Phys. Rev. A 36:3682(1987).ADSCrossRefGoogle Scholar
  17. 17.
    R.E. Kennerly, “Absolute total electron scattering cross sections for N 2 between 0.5 and 50 eV,” Phys. Rev. A 21:1876(1980).ADSCrossRefGoogle Scholar
  18. 18.
    W. Sohn, K.-H. Kochern, K.-M. Scheuerlein, K. Jung, and H. Ehrhardt, “Near-threshold vibrational excitation and elastic electron scattering from N2,” J. Phys. B 19:4017(1986).ADSCrossRefGoogle Scholar
  19. 19.
    K. Jost, P.G.F. Bisling, F. Eschen, M. Felsmann, and L. Walther, Total cross sections for electron scattering from N2, Xe, Kr and Ar, in: “Abstracts of Contributed Papers, Thirteenth International Conference on the Physics of Electronic and Atomic Collisions,” J. Eichler, I.V. Hertel, and N. Stolterfoht, eds., North-Holland, Amsterdam (1983).Google Scholar
  20. 20.
    A. Temkin and K.V. Vasavada, “Scattering of Electrons from \( H_2^ + \),” Phys. Rev. 160:137(1978); 186:57(1969).Google Scholar
  21. 21.
    C.A. Weatherford and A. Temkin, “Completion of a hybrid theory calculation of the IIg resonance in electron-N 2 scattering,” Phys. Rev. A 49:2580(1994).ADSCrossRefGoogle Scholar
  22. 22.
    H.-D. Meyer, S. Pal, and U. Riss, “Inclusion of electron correlation for the target wavefunction in eN 2 scattering,” Phys. Rev. A 46:186(1992).ADSCrossRefGoogle Scholar
  23. 23.
    W.M. Huo, M.A.P. Lima, T.L. Gibson, and V. McKoy, “Correlation effects in elastic eN 2 scattering,” Phys. Rev. A 36:1642(1987).ADSCrossRefGoogle Scholar
  24. 24.
    L. Dubé and A. Herzenberg, “Absolute cross sections from the ‘boomerang model’ for resonant electron-molecule scattering,” Phys. Rev. A 20:194(1979).ADSCrossRefGoogle Scholar
  25. 25.
    B.I. Schneider, M. Le Dourneuf, and Vo Ky Lan, “Resonant Vibrational Excitation of N2 by Low-Energy Electrons: An Ab Initio R-Matrix Calculation,” Phys. Rev. Lett. 43:1926(1979).ADSCrossRefGoogle Scholar
  26. 26.
    M.J. Brennan, D.T. Alle, P. Euripides, S.J. Buckman, and M.J. Brunger, “Elastic electron scattering and rovibrational excitation of N2 at low incident energies,” J. Phys. B 25:2669(1992).ADSCrossRefGoogle Scholar
  27. 27.
    T.W. Shyn and G.R. Carignan, “Angular distribution of electrons scattered from gases: 1.5–400 eV on N2. II,” Phys. Rev. A 22:923(1980).ADSCrossRefGoogle Scholar
  28. 28.
    Cf. for example M. Morrison, A.N. Feldt, and D.A. Austin, “Adiabatic Approximation for Excitation of Molecules by Low-Energy Electron Impact: Rotational Excitation of H2,” Phys. Rev. A 29:2518(1984).ADSCrossRefGoogle Scholar
  29. 29.
    D.M. Chase, “Adiabatic Approximation for Scattering Processes,” Phys. Rev. 104:838(1956).ADSCrossRefGoogle Scholar
  30. 30.
    E.S. Chang and A. Temkin, “Rotational Excitation of Diatomic Molecules by Electron Impact,” Phys. Rev. Lett. 23:399(1969).ADSCrossRefGoogle Scholar
  31. 31.
    P.G. Burke and N. Chandra, “Electron-molecule interactions III: A pseudo-potential for e-N2 scattering,” J. Phys. B 5:1696(1972).ADSCrossRefGoogle Scholar
  32. 32.
    F.A. Gianturco and D.G. Thompson, Computational models for e-polyatomic low-energy scattering, in: “Electron-Molecule Collisions,” J. Hinze, ed., Plenum, N.Y. (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. Temkin
    • 1
  • C. A. Weatherford
    • 2
  1. 1.Laboratory for Astronomy and Solar Physics, Code 680Goddard Space Flight Center, NASAGreenbeltUSA
  2. 2.Department of Physics and Center for Nonlinear & Nonequilibrium AeroscienceFlorida A&M UniversityTallahasseeUSA

Personalised recommendations