Skip to main content

Part of the book series: NATO ASI Series ((NSSA,volume 225))

Abstract

Two and higher dimensional NMR spectroscopies offer extraordinary power for detailed structure elucidation of proteins, nucleic acids and other important biomolecules. The methodology of elucidating biopolymer structures at atomic resolution from NMR spectroscopic data incorporates primarily NOESY experiments, but also may add spin-spin coupling constants and other information measured from COSY and other NMR experimentation. There are several important challenges that must be overcome in order for this methodology to be generally applicable to a broad range of biomolecules. One of the most important long-term goals of this research arena is to be able to determine structures with a confidence level sufficient to allow utilization of the structural information without confirmatory experimentation such as single X-ray structures.

In order to achieve this long-term goal, a number of issues must be dealt with: 1) primary 2D (nD) data reduction must incorporate techniques to allow accurate determination of sufficient NOESY cross-peak volumes; 2) computational schemes must be developed which not only determine refined molecular structures from the experimental information, but which also reflect confidence levels in the determined structures based on intelligent error analysis through all procedures; 3) corrections for these calculations must include, at a minimum, correction for dynamics variations, correction and recovery for missed spectral assignments, and wide sampling of possible molecular geometries.

Development of automated and assisted multi-dimensional NMR spectral assignment techniques is critical for many of these studies, where hundreds or even thousands of cross peaks may be significant for analysis. Techniques incorporating automated NOESY walks, pattern recognition for identification of specific sites, and other techniques will have to be used together for optimal spectral assignment. Of course 3- and higher dimensional spectroscopy will also assist in this area.

At Syracuse University, one of the primary goals realized at this time, is optimal preparation of the data for analysis. Use of non-linear processing techniques based on the maximum likelihood method (MLM) and specialized protocols increases the number of cross peaks that can be used for 3D structure determination. Experiments and computation underway indicates that these non-linear techniques have broad applicability and that, across a range of spectral conditions, they are robust and quantitative (or where dynamic range is too high, corrections may be possible to quantitate the smallest peaks). Preliminary results on synthetic and mixed data show superior quantification of cross-peak volumes over a range of peaks sizes exceeding 50:1.

A second area of investigation at Syracuse University involves utilization of parallel and distributed computing methods. These are initially being applied to two applications: 1) 3D NMR data processing and 2) using a genetic algorithm for NMR molecular modeling.

The basic idea is to utilize, in parallel, workstation and other computers coexistent on local and wide-area computer networks. In cases where specialized computing hardware such as MIMD parallel computers (examples: Alliant FX/80, Hypercubes, etc.) or SIMD architectures (example: Connection Machine) are available, an additional opportunity is present to dissect a computational application and allocate appropriate portions to that specialized hardware. This type of distribution of processing tasks is included in the work underway. Thus, on a computational network such as the one existing at Syracuse University which incorporates a large number of Sun work stations, IBM RISC System 6000’s, and a large configuration Connection Machine 2, as well as an Alliant FX/80, more than an order of magnitude speedup in realization of compute and I/O applications such as 3D NMR data processing and matrix manipulation found in aspects of NMR molecular modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. R. Frieden, J. Opt. Soc. Am. 62, 511 (1972).

    Article  CAS  PubMed  Google Scholar 

  2. B. R. Frieden, in “Picture Processing and Digital Filtering”, T. S. Huang, ed., 177–248, Springer-Verlag, Berlin/New York (1975).

    Google Scholar 

  3. S. F. Gull and G. J. Daniell, Nature (London), 272, 686 (1978).

    Article  Google Scholar 

  4. R. K. Bryan, Ph.D. thesis, University of Cambridge (1981).

    Google Scholar 

  5. S. Sibisi, Nature 301, 134 (1983).

    Article  CAS  Google Scholar 

  6. J. Skilling, Nature 309, 748 (1984).

    Article  Google Scholar 

  7. S. Sibisi, J. Skilling, R G. Brereton, E. D. Laue, and J. Staunton, Nature 311, 446 (1984).

    Article  CAS  Google Scholar 

  8. J. Skilling and R. K. Bryan, Mon. Not. R. Astron. Soc. 211, 111 (1984).

    Google Scholar 

  9. J. C. Hoch, J. Magn. Reson. 64, 436 (1985).

    CAS  Google Scholar 

  10. E. D. Laue, J. Skilling, J. Staunton, S. Sibisi, and R. B. Brereton, J. Magn. Reson. 62, 437 (1985).

    CAS  Google Scholar 

  11. P. J. Hore, J. Magn. Reson. 62, 561 (1985).

    CAS  Google Scholar 

  12. J. F. Martin, J. Magn. Reson. 65, 291 (1985).

    CAS  Google Scholar 

  13. E. D. Laue, J. Skilling, R. B. Brereton, S. Sibisi, and J. Staunton, J. Magn. Reson. 62, 446 (1985).

    Google Scholar 

  14. E. D. Laue, M. R. Mayger, J. Skilling, and J. Staunton, J. Magn. Reson. 68, 14 (1986).

    CAS  Google Scholar 

  15. J. Capon, Proc. IEEE 57, 1408 (1969).

    Article  Google Scholar 

  16. F. Ni and H. A. Scheraga, QCPE Documentation, 573 (1988).

    Google Scholar 

  17. F. Ni and H. A. Scheraga, J. Magn. Reson. 82, 413–418 (1989).

    CAS  Google Scholar 

  18. R. E. Hoffman, A. Kumar, K. D. Bishop, P. N. Borer, and G. C. Levy, J. Magn. Reson. 83, 586–594 (1989).

    CAS  Google Scholar 

  19. R. H. Newman, J. Magn. Reson. 79, 448 (1988).

    CAS  Google Scholar 

  20. P. A. Jansson, R. H. Hunt, and E. K. Plyler, J. Opt. Soc. Am. 60, 596 (1970).

    Article  CAS  Google Scholar 

  21. W. E. Blass and G. W. Halsey, “Deconvolution of Absorption Spectra,” Academic Press, New York (1981).

    Google Scholar 

  22. P. A. Jansson, in “Deconvolution with Applications in Spectroscopy”, (P.A. Jansson, ed.), 96–132, Academic Press, New York/Orlando (1984).

    Google Scholar 

  23. G. W. Halsey and W. E. Blass, in “Deconvolution with Applications in Spectroscopy, (P.A. Jansson, ed.), 188–225, Academic Press, New York/Orlando (1984).

    Google Scholar 

  24. G. J. Thomas, Jr. and D. A. Agard, Biophys. J. 46, 763 (1984).

    Article  CAS  PubMed  Google Scholar 

  25. B. P. Medoff, “Proceedings, IEEE International Conference on Acoust., Speech, Signal Processing”, Tampa, FL, 1073-1076 (1985).

    Google Scholar 

  26. B. P. Medoff, in “Image Recovery: Theory and Application”, H. Stark, ed., 321–368, Academic Press, New York/Orlando (1987).

    Google Scholar 

  27. F. Ni and H. A. Scheraga, J. RamanSpectrosc. 16, 337 (1985).

    Article  CAS  Google Scholar 

  28. F. Ni, G. C. Levy, and H. A. Scheraga, J. Magn. Reson. 66, 385 (1986).

    CAS  Google Scholar 

  29. A. R. Mazzeo and G. C. Levy, Comput. Enhanced Spectrosc. 3, 165, (1986).

    CAS  Google Scholar 

  30. A. A. Bothner-By and J. Dadok, J. Magn. Reson. 72, 540 (1987).

    CAS  Google Scholar 

  31. M. A. Delsuc and G. C. Levy, J. Magn. Reson. 76, 306 (1988).

    CAS  Google Scholar 

  32. A. R. Mazzeo, M. A. Delsuc, A. Kumar, and G. C. Levy, J. Magn. Reson. 81, 512–519 (1989).

    CAS  Google Scholar 

  33. H. Barkhuusen, R. De Beer, W. M. M. J. Bovée, and D. Van Ormondt, J. Magn. Reson. 61, 465 (1985).

    Google Scholar 

  34. J. Tang and J. R. Norris, J. Magn. Reson. 69, 180 (1986).

    CAS  Google Scholar 

  35. J. Tang and J. R. Norris, J. Chem. Phys. 84, 5210 (1986).

    Article  CAS  Google Scholar 

  36. A. E. Schussheim and D. Cowburn, J. Magn. Reson. 71, 371 (1987).

    Google Scholar 

  37. H. Gesmar and J. J. Led, “Spectral Estimation of Two-dimensional NMR Signals Applying Linear Prediction to Both Dimensions”, Thesis, Univ. of Copenhagen (1987).

    Google Scholar 

  38. F. Ni and H. A. Scheraga, J. Magn. Reson. 70, 506 (1987).

    Google Scholar 

  39. M. A. Delsuc, F. Ni, and G. C. Levy, J. Magn. Reson. 73, 548 (1987).

    CAS  Google Scholar 

  40. G. L. Bretthorst, “Bayesian Spectrum Analysis and Parameter Estimation”, Ph.D. thesis, Department of Physics, Washington University, St. Louis, Missouri, August (1987).

    Google Scholar 

  41. E. T. Jaynes, in “Maximum-Energy and Bayesian Spectral Analysis and Estimation Problems”, C. R. Smith and G. J. Erickson, eds., p. 1, Reidel, Dordecht, Holland (1987).

    Chapter  Google Scholar 

  42. G. L. Bretthorst, C. C. Hung, D. A. D’Avignon, and J. J. H. Ackerman, J. Magn. Reson. 79, 369–376 (1988).

    Google Scholar 

  43. J. H. Holland, K. J. Holyoad, R. E. Nisbett, and P. R. Thagard, Induction: Process of Inference, Learning and Discovery The MIT Press (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Levy, G.C., Wang, S., Kumar, P., Jeong, Gw., Borer, P.N. (1991). Software Approaches for Determination of 3-Dimensional Molecular Structures from Multi-Dimensional NMR. In: Hoch, J.C., Poulsen, F.M., Redfield, C. (eds) Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy. NATO ASI Series, vol 225. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9794-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9794-7_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9796-1

  • Online ISBN: 978-1-4757-9794-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics