Skip to main content

NMR Structures of Proteins Using Stereospecific Assignments and Relaxation Matrix Refinement in a Hybrid Method of Distance Geometry and Simulated Annealing

  • Chapter
Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy

Part of the book series: NATO ASI Series ((NSSA,volume 225))

  • 77 Accesses

Abstract

The hybrid method combining the early stages of a distance geometry program with molecular dynamics/simulated annealing in the presence of NMR constraints was optimized to obtain structures consistent with the observed NMR data. Two novel methods of stereospecific assignments of the protons at the prochiral carbons are used in simulated annealing, the “floating” chirality assignment and a high-dimensional potential. These two methods were compared with stereospecific assignments obtained from the coupling constant data. There is good agreement between the three methods in predicting the same stereospecific assignments. As the high-dimensional potential uses more relaxed absolute distance constraints and also takes into account the relative distance constraint patterns, it reduces possible overinterpretation of the NOE data. The structures obtained from the hybrid method were further refined using the relaxation matrix approach. This approach employs the analytical form of the gradient of the calculated spectrum. Compared to the structures determined with the two-spin approximation, the fit to the NMR data improves significantly with only minimal r.m.s. shifts in the structure during simple conjugate gradient minimization. The R-factors, defined similarly to the crystallographic R-factors, are 0.51 for the structures calculated using the two-spin approximation and 0.26 for the refined structures. Large shifts of approx. 1 Å occur during a dynamics/simulated annealing calculation. The various stages of refinement and stereospecific assignments are tested on the NOE data for the small squash trypsin inhibitor, CMTI-I. In the case of CMTI-I, the last step of the refinement improved the agreement with the X-ray structure significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Wüthrich, in “NMR of Proteins and Nucleic Acids,” pp. 117–199, Wiley-Interscience, New York (1986).

    Google Scholar 

  2. R. Kaptein, E. R. P. Zuiderweg, R. M. Scheek, R. Boelens, and W. F. van Gunsteren, J. Mol. Biol. 182, 179–182 (1985).

    Article  PubMed  CAS  Google Scholar 

  3. T. A. Holak, J. H. Prestegard, and J. D. Forman, Biochemistry 26, 4652–4660 (1987).

    Article  PubMed  CAS  Google Scholar 

  4. T. A. Holak, S. K. Kearsley, Y. Kim, and J. H. Prestegard, Biochemistry 27, 6135–6142 (1988).

    Article  PubMed  CAS  Google Scholar 

  5. R. Kaptein, R. Boelens, R. M. Scheek, and W. F. van Gunsteren, Biochemistry 27, 5389–5395 (1988).

    Article  PubMed  CAS  Google Scholar 

  6. A. T. Brünger, G. M. Clore, A. M. Gronenborn, and M. Karplus, Proc. Natl. Acad. Sci. USA 83, 3801–3805 (1986).

    Article  PubMed  Google Scholar 

  7. G. M. Clore and A. M. Gronenborn, C.R.C. in Biochemistry and Mol. Biol. 24, 479–564 (1989).

    Article  CAS  Google Scholar 

  8. M. Nilges, A. M. Gronenborn, A. T. Brünger, and G. M. Clore, Protein Eng. 2, 27–38 (1988).

    Article  PubMed  CAS  Google Scholar 

  9. J. M. Moore, D. W. Case, W. J. Chazin, G. P. Gippert, T. F. Havel, R. Powls, and P. E. Wright, Science 240, 314–317 (1988).

    Article  PubMed  CAS  Google Scholar 

  10. M. J. Tappin, A. Pastore, R. S. Norton, J. H. Freer, and I. D. Campbell, Biochemistry 27, 1643–1647 (1988).

    Article  PubMed  CAS  Google Scholar 

  11. W. Braun and N. Gō, J. Mol. Biol. 186, 611–626 (1985).

    Article  PubMed  CAS  Google Scholar 

  12. K. Wüthrich, Science 243, 45–50 (1989).

    Article  PubMed  Google Scholar 

  13. W. Braun, Quart. Rev. Biophys. 19, 1115–1157 (1987).

    Article  Google Scholar 

  14. G. Wagner, W. Braun, T. F. Havel, T. Schaumann, N. Gö, K. Wüthrich, J. Mol. Biol. 196, 611–639 (1987).

    Article  PubMed  CAS  Google Scholar 

  15. V. Saudek, R. J. P. Williams, and G. Ramponi, FEBS Lett. 242, 225–232 (1989).

    Article  PubMed  CAS  Google Scholar 

  16. T. F. Havel, and K. Wüthrich, J. Mol. Biol. 182, 281–294 (1985).

    Article  PubMed  CAS  Google Scholar 

  17. M. P. Williamson, T. F. Havel, and K. Wüthrich, J. Mol. Biol. 182, 295–315 (1985).

    Article  PubMed  CAS  Google Scholar 

  18. T. A. Holak, M. Nilges, J. H. Prestegard, A. M. Gronenborn, and G. M. Clore, Eur. J. Biochem. 175, 9–15 (1988b).

    Article  PubMed  CAS  Google Scholar 

  19. T. A. Holak, M. Nilges, and H. Oschkinat, FEBS Letters 242, 218–224 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. P. L. Weber, R. Morrison, and D. Hare, J. Mol. Biol. 204, 483–487 (1988).

    Article  PubMed  CAS  Google Scholar 

  21. B. A. Borgias, M. Gochin, D. J. Kerwood, and T. L. James, Progress in NMR Spectr. 22, 83–100 (1990).

    Article  CAS  Google Scholar 

  22. R. Boelens, T. M. G. Koning, G. A. Van der Marel, J. H. van Boom, and R. Kaptein, R., J. Magn. Reson. 82, 290–308 (1989).

    CAS  Google Scholar 

  23. P. Yip, and D. A. Case, J. Magn. Reson. 83, 643–648 (1989).

    CAS  Google Scholar 

  24. A. T. Brünger, J. Mol. Biol. 203, 803–816 (1988).

    Article  PubMed  Google Scholar 

  25. W. J. Metzler, D. R. Hare, and A. Pardi, Biochemistry 28, 7045–7052 (1989).

    Article  PubMed  CAS  Google Scholar 

  26. T. F. Havel, I. D. Kuntz, and G. M. Crippen, Bull. Mth. Biol. 45, 673–698 (1983).

    Google Scholar 

  27. V. C. Singh, and P. A. Kollman, J. Comput. Chem. 5, 129–145 (1984).

    Article  CAS  Google Scholar 

  28. T. A. Holak, J. N. Scarsdale, and J. H. Prestegard, J. Magn. Reson. 74, 546–549 (1987).

    Google Scholar 

  29. K. Wüthrich, M. Billeter, and W. Braun, J. Mol. Biol. 169, 949–961 (1983).

    Article  PubMed  Google Scholar 

  30. T. A. Holak, D. Gondol, J. Otlewski, and T. Wilusz, J. Mol. Biol. 210, 635–648 (1989).

    Article  PubMed  CAS  Google Scholar 

  31. T. F. Havel, DISGEO, Quantum Chemistry Exchange, Program no. 507, Indiana University (1986).

    Google Scholar 

  32. J. Habazettl, C. Cieslar, H. Oschkinat, and T. A. Holak, FEBS Letters 268(1), 141–145 (1990).

    Article  PubMed  CAS  Google Scholar 

  33. S. G. Hyberts, W. Mäki, and G. Wagner, Eur. J. Biochem. 164, 625–635 (1987).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Habazettl, J., Nilges, M., Oschkinat, H., Brünger, A.T., Holak, T.A. (1991). NMR Structures of Proteins Using Stereospecific Assignments and Relaxation Matrix Refinement in a Hybrid Method of Distance Geometry and Simulated Annealing. In: Hoch, J.C., Poulsen, F.M., Redfield, C. (eds) Computational Aspects of the Study of Biological Macromolecules by Nuclear Magnetic Resonance Spectroscopy. NATO ASI Series, vol 225. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9794-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9794-7_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9796-1

  • Online ISBN: 978-1-4757-9794-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics