How to Deal with Spin-Diffusion and Internal Mobility in Biomolecules. A Relaxation Matrix Approach

  • R. Kaptein
  • T. M. G. Koning
  • R. Boelens
Part of the NATO ASI Series book series (NSSA, volume 225)


Errors in proton-proton distances derived from NOEs are mainly due to the effects of spin-diffusion and local mobility. Both can be treated in the frame-work of relaxation matrix theory. The iterative relaxation matrix approach (IRMA), by which errors due to spin-diffusion can be corrected, is reviewed. Symmetrical exchange processes in biomolecules such as aromatic ring flips and methyl group rotation can be easily treated. To account for fast local motions on a picosecond time-scale a method is proposed, in which generalized order parameters S 2 are calculated from a free molecular dynamics run of the molecule in H2O. The S 2 values are then used to correct NOE derived distances, which in turn are used for the final structure refinement.


Spectral Density Function Nuclear Overhauser Effect Time Correlation Function Local Mobility Relaxation Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Boelens, T. M. G. Koning, and R. Kaptein, J. Mol. Struc. 173, 299 (1988).CrossRefGoogle Scholar
  2. 2.
    R. Boelens, T. M. G. Koning, G. A. van der Marel, J. H. van Boom, and R. Kaptein, J. Mágn. Res. 82, 290 (1989).Google Scholar
  3. 3.
    T. M. G. Koning, R. Boelens, and R. Kaptein, J.Magn. Res., 90, 111 (1990).Google Scholar
  4. 4.
    I. Solomon, Phys. Rev. 99, 559 (1955).CrossRefGoogle Scholar
  5. 5.
    D. Neuhaus and M. Williamson, “The Nuclear Overhauser Effect in Structural and Cornformational Analysis”, VCH Publishers, Inc., New York (1989).Google Scholar
  6. 6.
    S. Macura and R. R. Ernst, Mol. Phys. 41, 95 (1980).CrossRefGoogle Scholar
  7. 7.
    C. L. Perrin and R. K. Gipe, J. Am. Chem. Soc. 106, 4036 (1984).CrossRefGoogle Scholar
  8. 8.
    E. T. Olejniczak, R. T. Jr. Gaupe, and S. W. Fesic, J. Magn. Reson. 67, 28 (1986).Google Scholar
  9. 9.
    J. A. C. Rullmann, A. M. J. J. Bonvin, R. Boelens, and R. Kaptein, to be published.Google Scholar
  10. 10.
    S. B. Landy and N. Rao, J. Magn. Reson. 81, 371 (1989).Google Scholar
  11. 11.
    J. Tropp, J. Chem. Phys. 72, 6035 (1980).CrossRefGoogle Scholar
  12. 12.
    D. E. Woessner, J. Chem. Phys. 36, 1(1962).Google Scholar
  13. 13.
    T. M. G. Koning, R. Boelens, G. A. van der Marel, J. H. van Boom, and R. Kaptein, Biochemistry, 30, 3787 (1991).PubMedCrossRefGoogle Scholar
  14. 14.
    G. Lipari and A. Szabo, J. Am. Chem. Soc. 104, 4546 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • R. Kaptein
    • 1
  • T. M. G. Koning
    • 1
  • R. Boelens
    • 1
  1. 1.Bijvoet Center for Biomolecular ResearchNMR SpectroscopyCH UtrechtThe Netherlands

Personalised recommendations