Distance Geometry in Torsion Angle Space: New Developments and Applications

  • Werner Braun
Part of the NATO ASI Series book series (NSSA, volume 225)


Distance geometry aims at the determination of all macromolecular conformations compatible with distance and dihedral angle constraints. One particular method, the variable target function method in torsion angle space, has been frequently used in the determination of polypeptide and protein structures. This method can be efficiently vectorized on a supercomputer. With the improved program, DIANA, sampling and convergence properties of this method can be studied in detail. Another feature concerns the flexibility in the type of covalent structures which the method can handle. A new graphics tool, GEOM, was developed to deal with linear or cyclic structures that frequently arise in designing new drugs.


Target Function Matrix Approach Distance Constraint FEBS Letter Distance Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Braun, Quart. Rev. Biophys. 19, 115–157 (1987).CrossRefGoogle Scholar
  2. 2.
    R. Kaptein, R. Boelens, R. M. Scheek, and W. F. van Gunsteren, Biochemistry 27, 5389–5395 (1988).CrossRefPubMedGoogle Scholar
  3. 3.
    A. Bax, Annu. Rev. Biochem. 58, 223–256 (1989).CrossRefPubMedGoogle Scholar
  4. 4.
    G. M. Clore, and A. M. Gronenborn, Crit. Rev. Biochem. Mol. Biol. 24, 479–564 (1989).CrossRefPubMedGoogle Scholar
  5. 5.
    I. D. Kuntz, J. F. Thomason, and C. M. Oshiro, in “Methods in Enzymology,” Oppenheimer and James, eds. Vol. 177, p. 159-203 (1989).Google Scholar
  6. 6.
    R. Kaptein, E. R. P. Zuiderweg, R. M. Scheek, R. Boelens, and W. F. van Gunsteren, J. Mol. Biol. 182, 179–182 (1985).CrossRefPubMedGoogle Scholar
  7. 7.
    A. T. Brünger, G. M. Clore, A. M. Gronenborn, and M. Karplus, Pioc. Natl. Acad. Sci. 83, 3801–3805 (1986).CrossRefGoogle Scholar
  8. 8.
    G. M. Crippen, J. Comp. Phys. 26, 449–452 (1977).CrossRefGoogle Scholar
  9. 9.
    G. M. Crippen “Distance Geometry and Conformation al Calculations”, in “Chemo-metrics Research Studies Series,” Vol. 1, D. Bawden, ed., New York: Research Studies Press (1981).Google Scholar
  10. 10.
    G. M. Crippen, and T. F. Havel, Ada Cryst. A, 34, 282–284 (1978).CrossRefGoogle Scholar
  11. 11.
    T. F. Havel, I. D. Kuntz, and G. M. Crippen, Bull. Math. Biol. 45, 665–720 (1983).Google Scholar
  12. 12.
    W. Braun, G. Wider, K. H. Lee, and K. Wüthrich, J. Mol Biol. 169, 921–948 (1983).CrossRefPubMedGoogle Scholar
  13. 13.
    W. Braun, C. Bosch, L. R. Brown, N. Gö, and K. Wüthrich, Biochim. Biophys. Acta 667, 377–396 (1981).CrossRefPubMedGoogle Scholar
  14. 14.
    G. M. Crippen, N. Oppenheimer, and M. Conolly, Int. J. Pept. Prot. Res. 17, 156–169 (1981).CrossRefGoogle Scholar
  15. 15.
    T. F. Havel and K. Wüthrich, J. Mol. Biol. 182, 281–294 (1985).CrossRefPubMedGoogle Scholar
  16. 16.
    F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, J. Phys. Chem. 79, 2361–2381 (1975).CrossRefGoogle Scholar
  17. 17.
    G. Wagner, W. Braun, T. F. Havel, T. Schaumann, M. Gö, and K. Wüthrich, J. Mol Biol. 196, 611–641 (1987).CrossRefPubMedGoogle Scholar
  18. 18.
    M. Nilges, G. M. Clore, and A. M. Gronenborn, FEBS Letters 229, 317–324 (1988).CrossRefPubMedGoogle Scholar
  19. 19.
    W. J. Metzler, D. R. Hare, and A. Pardi, Biochemistry 28, 7045–7052 (1989).CrossRefPubMedGoogle Scholar
  20. 20.
    W. Braun and N. Gö, J. Mol. Biol. 186, 611–626 (1985).CrossRefPubMedGoogle Scholar
  21. 21.
    S. Endo, H. Inooka, Y. Ishibashi, C. Kitada, E. Mizuta, and M. Fujiino, FEBS Letters 257, 149–154 (1989).CrossRefPubMedGoogle Scholar
  22. 22.
    R. Bazzo, M. J. Tappin, A. Pastore, T. S. Harvey, J. A. Carver, and I. D. Campbell, Eur. J. Biochem. 173, 139–146 (1988).CrossRefPubMedGoogle Scholar
  23. 23.
    A. Pastore, T. S. Harvey, C. E. Dempsey, and I. D. Campbell, European Biophysical Journal 16, 363–367 (1989).CrossRefGoogle Scholar
  24. 24.
    F. Inagaki, I. Shimada, K. Kawaguchi, M. Hirano, I. Terasawa, T. Ikura, and N. Gō, Biochemistry 28, 5985–5991 (1989).CrossRefGoogle Scholar
  25. 25.
    H. Senn, H. R. Loosli, M. Sanner, and W. Braun, Biopolymers 29, 1387–1400 (1990).CrossRefPubMedGoogle Scholar
  26. 26.
    Y. Kobayashi, T. Ohkubo, Y. Kyogoku, Y. Nishiuchi, S. Sakakibara, W. Braun, and N. Gö, Biochemistry 28, 4853–4861 (1989).CrossRefPubMedGoogle Scholar
  27. 27.
    W. Braun, G. Wagner, E. Wörgötter, M. Vasák, J. H. R. Kági, and K. Wüthrich, J. Mol Biol 187, 125–129 (1986).CrossRefPubMedGoogle Scholar
  28. 28.
    H. Widmer, M. Billeter, and K. Wüthrich, Proteins 6, 357–371 (1989).CrossRefPubMedGoogle Scholar
  29. 29.
    G. T. Montelione, K. Wüthrich, E. C. Nice, A. W. Burgess, and H. A. Scheraga, Proc. Natl. Acad. Sci. USA, 84, 5226–5230 (1987).CrossRefPubMedGoogle Scholar
  30. 30.
    D. Kohda, N. Gö, N., K. Hayashi, and F. Inagaki, J. Biochem. 103, 741–743 (1988).PubMedGoogle Scholar
  31. 31.
    D. Kohda, I. Shimada, T. Miyaké, T. Fuwa, and F. Inagaki, Biochemistry 28, 953–958 (1989).CrossRefPubMedGoogle Scholar
  32. 32.
    Y. Q. Qian, M. Billeter, G. Otting, M. Müller, W. J. Gehring, and K. Wüthrich, Cell 59, 573–580 (1989).CrossRefPubMedGoogle Scholar
  33. 33.
    A. D. Kline, W. Braun, and K. Wüthrich, J. Mol Biol 204, 675–724 (1988).CrossRefPubMedGoogle Scholar
  34. 34.
    E. R. P. Zuiderweg, D. G. Nettesheim, K. W. Mollison, and G. W. Carter, Biochemistry 28, 172–185 (1989).CrossRefPubMedGoogle Scholar
  35. 35.
    V. Saudek, R. A. Atkinson, R. J. P. Williams, and G. Ramponi, J. Mol. Biol 205, 229–239 (1989).CrossRefPubMedGoogle Scholar
  36. 36.
    V. Saudek, V. Wormald, M. R. Williams, R. J. P. Boyd, J. Stefani, M., and Ramponi, G., J. Mol Biol 207, 229–239 (1989).CrossRefGoogle Scholar
  37. 37.
    P. Güntert, W. Braun, K. Wüthrich, J. Mol Biol, 217, 517–530 (1991).CrossRefPubMedGoogle Scholar
  38. 38.
    M. Sanner, A. Widmer, H. Senn, and W. Braun, J. Comp. Aided Molecular Design 3, 195–210 (1989).CrossRefGoogle Scholar
  39. 39.
    T. H. Havel, and K. Wüthrich, Bull. Math. Biol 46, 673–698 (1984).Google Scholar
  40. 40.
    M. Vasquez, and H. A. Scheraga, J. Biomol. Struct. Dynam. 5, 705–755 (1988).CrossRefGoogle Scholar
  41. 41.
    M. Vasquez, and H. A. Scheraga, J. Biomol Struct. Dynam. 5, 757–784 (1988).CrossRefGoogle Scholar
  42. 42.
    G. T. Montelione, M. E. Winkler, P. Rauenbuehler, and G. Wagner, J. Magn. Res. 82, 198–204 (1989).Google Scholar
  43. 43.
    G. Wider, D. Neri, G. Otting, and K. Wüthrich, J. Magn. Res. 85, 426–431 (1989).Google Scholar
  44. 44.
    L. E. Kay, and A. Bax, J. Magn. Res. 86, 110–126 (1990).Google Scholar
  45. 45.
    M. Karplus, J. Amer. Chem. Soc. 85, 2870–2871 (1963).CrossRefGoogle Scholar
  46. 46.
    J. S. Taylor, D. S. Garret, and M. J. Wang, Biopolymers 27, 1571–1593 (1988).CrossRefPubMedGoogle Scholar
  47. 47.
    G. M. Smith, and D. F. Veber, Biochim. Biophys. Res. Commun. 134, 907–914 (1986).CrossRefGoogle Scholar
  48. 48.
    A. W. Torda, B. C. Mabbutt, W. F. van Gunsteren, and R. S. Norton, FEBS Letters 239, 266–270 (1988).CrossRefPubMedGoogle Scholar
  49. 49.
    A. S. Arseniev, P. Schultze, E. Wörgötter, W. Braun, G. Wagner, M. Vasák, J. H. R. Kägi, and K. Wüthrich, K., J. Mol. Biol. 201, 637–657 (1988).CrossRefPubMedGoogle Scholar
  50. 50.
    P. Schultze, E. Wörgötter, W. Braun, G. Wagner, M. Vasák, J. H. R. Kägi, and K. Wüthrich, J. Mol. Biol. 203, 251–268 (1988).CrossRefPubMedGoogle Scholar
  51. 51.
    B. Messerle, A. Schäffer, M. Vasak, J. H. R. Kägi, and K. Wüthrich, J. Mol. Biol., in press (1990).Google Scholar
  52. 52.
    W. F. Furey, A. H. Robbins, L. L. Clancy, D. R. Winge, B. C. Wang, and C. D. Stout, Science 231, 704–710 (1986).CrossRefPubMedGoogle Scholar
  53. 53.
    K. Wüthrich, M. Billeter, and W. Braun, J. Mol. Biol. 6, 357–371 (1989).Google Scholar
  54. 54.
    T. F. Havel, Biopolymers 29, 1565–1585 (1990).CrossRefPubMedGoogle Scholar
  55. 55.
    D. Mulvey, G. F. King, R. M. Cooke, D. G. Doak, T. S. Harvey, and I. D. Campbell, FEBS Letters 257, 113–117 (1989).CrossRefPubMedGoogle Scholar
  56. 56.
    Y. Kuroda, S. Endo, A. Wada, and K. Nagayama, in “Spectroscopy of Biological Molecules — New Advances,” D. E. Schmidt, F. W. Schneider, and F. Siebert, John Wiley: New York (1988).Google Scholar
  57. 57.
    T. Ohkubo, Y. Kobayashi, Y. Shimonishi, Y. Kyuogoku, W. Braun, and N. Gö, Biopoymers 25, S123–S134, (1986).Google Scholar
  58. 58.
    W. E. Steinmetz, P. Bougis, H. Rochat, O. D. Redwine, W. Braun, and K. Wüthrich, Eur. J. Biochem. 172, 101–116 (1988).CrossRefPubMedGoogle Scholar
  59. 59.
    H. Haruyama, and K. Wüthrich, Biochemistry 28, 4301–4312 (1989).CrossRefPubMedGoogle Scholar
  60. 60.
    A. D. Kline, W. Braun, and K. Wüthrich, J. Mol. Biol. 189, 377–382 (1986).CrossRefPubMedGoogle Scholar
  61. 61.
    E. R. P. Zuiderweg, J. Henkin, K. W. Mollison, G. W. Carter, and J. Gréer, Proteins 3, 139–145 (1988).CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Werner Braun
    • 1
  1. 1.Institute for Molecular Biology and BiophysicsETH ZürichZürichSwitzerland

Personalised recommendations