Advertisement

Density Functionals, Molecular Dynamics, and More

  • R. O. Jones

Abstract

The Third Gordon Godfrey Workshop addresses the role of computational methods in understanding (and developing) new materials. There is no doubt that these methods, particularly the use of computer simulations, will play a very important role in developing our understanding of the structures and properties of molecules, clusters, and bulk materials with complex structures. In the present chapter, I shall focus on methods for calculating the stable structures of such systems, the problems that must be faced, and ways of overcoming them. I shall show that the combination of density functional and molecular dynamics schemes provides a powerful way of calculating structures, although it is by no means the answer to all our problems in this area.

Keywords

Wave Function Molecular Dynamic Simulated Annealing Dihedral Angle Nodal Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hoffmann, Scientific American, February 1993, p. 40.Google Scholar
  2. 2.
    F. Crick, in: What mad pursuit, Penguin, London (1988), p. 150.Google Scholar
  3. 3.
    R.O. Jones, J. Chem. Phys. 82: 325 (1985).ADSCrossRefGoogle Scholar
  4. 4.
    T.P. Martin, T. Bergmann, and B. Wassermann: in Microclusters, Proceedings of the First NEC Symposium, Tokyo, 1986, S. Sugano, Y. Nishina and S. Ohnishi, eds., Springer, Berlin (1987), p. 152.Google Scholar
  5. 5.
    A. Cayley, Phil Mag. (4)47: 444 (1874).Google Scholar
  6. A.C. Lunn and J.K. Senior, J. Phys. Chem. 33: 1027 (1929).CrossRefGoogle Scholar
  7. G. Polyá, Acta Math. 68: 145 (1937).CrossRefGoogle Scholar
  8. 6.
    M.R. Hoare and J.A. Mclnnes, Adv. Phys. 32: 791 (1983).ADSCrossRefGoogle Scholar
  9. 7.
    L.T. Wille and J. Vennik, J. Phys. A 18: L419, L1113 (1985).MathSciNetADSCrossRefGoogle Scholar
  10. 8.
    M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco (1979).Google Scholar
  11. 9.
    S. Kirkpatrick, CD. Gelatt, and M.P. Vecchi, Science 220: 671 (1983).MathSciNetADSMATHCrossRefGoogle Scholar
  12. 10.
    R.O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61: 689 (1989).ADSCrossRefGoogle Scholar
  13. 11.
    R. Car and M. Parrinello, Phys. Rev. Lett. 55: 2471 (1985).ADSCrossRefGoogle Scholar
  14. 12.
    F. Stillinger, T.A. Weber, and R.A. LaViolette, J. Chem. Phys. 85: 6460 (1986).ADSCrossRefGoogle Scholar
  15. 13.
    K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New York (1979).Google Scholar
  16. 14.
    F.H. Stillinger and T.A. Weber, J. Phys. Chem. 91: 4899 (1987).CrossRefGoogle Scholar
  17. 15.
    D. Hohl, R.O. Jones, R. Car, and M. Parrinello, J. Chem. Phys. 89: 6823 (1988).ADSGoogle Scholar
  18. 16.
    See, for example, H. Margenau and G.M. Murphy, Mathematics of Physics and Chemistry, Van Nostrand, New York (1955).Google Scholar
  19. 17.
    P. Hohenberg and W. Kohn, Phys. Rev. 136: B864 (1964).MathSciNetADSCrossRefGoogle Scholar
  20. 18.
    W. Kohn and L.J. Sham, Phys. Rev. 140: A1133 (1965).MathSciNetADSCrossRefGoogle Scholar
  21. 19.
    J. Harris and R.O. Jones, J. Phys. F 4: 1170 (1974).ADSCrossRefGoogle Scholar
  22. 20.
    D.C. Langreth and J.P. Perdew, Solid State Commun. 17: 1425 (1975).ADSCrossRefGoogle Scholar
  23. 21.
    O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13: 4274 (1976).ADSCrossRefGoogle Scholar
  24. 22.
    J. Harris, Phys. Rev. A 29: 1648 (1984).ADSCrossRefGoogle Scholar
  25. 23.
    J.C. Slater, Quantum Theory of Atomic Structure, Vol. II, McGraw-Hill, New York (1960), Appendix 21.Google Scholar
  26. 24.
    O. Gunnarsson and R.O. Jones, Phys. Rev. B 31: 7588 (1985).ADSCrossRefGoogle Scholar
  27. 25.
    G.B. Bachelet, D.R. Hamann, and M. Schlüter, Phys. Rev. B 26: 4199 (1982).ADSCrossRefGoogle Scholar
  28. 26.
    R. Stumpf, X. Gonze, and M. Scheffler, Research Report, Fritz-Haber-Institut, Berlin (April, 1990), unpublished.Google Scholar
  29. 27.
    L. Verlet, Phys. Rev. 159: 2471 (1967).Google Scholar
  30. 28.
    J. Donohue, The Structures of the Elements, Wiley, New York (1974), Chapters 8 [group Va] and 9 [group Via].Google Scholar
  31. 29.
    R. Steudel, in: Studies in Inorganic Chemistry, Vol. 5, A. Müller and B. Krebs, eds., Elsevier, Amsterdam (1984).Google Scholar
  32. 30.
    R. Steudel and E.M. Strauss, in: The Chemistry of Inorganic Homo-and Heterocycies, Vol. 2, Academic, London (1987), p. 769.Google Scholar
  33. 31.
    H. Bitterer, ed., Schwefel: Gmelin Handbuch der Anorganischen Chemie, 8. Aufl., Ergänzungsband 3, Springer, Berlin (1980), p. 8.Google Scholar
  34. 32.
    K. Raghavachari, CM. Rohlfing, and J.S. Binkley, J. Chem. Phys. 93: 5862 (1990).ADSCrossRefGoogle Scholar
  35. 33.
    R. Steudel, T. Sandow, and J. Steidel, Z. Naturforsch. Teil B 40: 594 (1985).Google Scholar
  36. 34.
    R. Steudel, Angew. Chem. 87: 683 (1975) [Angew. Chem. Int. Edit. Engl. 14: 655 (1975)]; Z. Naturforsch. Teil B 38: 543 (1983).CrossRefGoogle Scholar
  37. 35.
    R. Steudel, T. Sandow, and R. Reinhardt, Angew. Chem. 89: 757 (1983) [Angew. Chem. Int. Edit. Engl. 16: 716 (1983)].CrossRefGoogle Scholar
  38. 36.
    L. Pauling, Proc. Nat. Acad. Sci. USA 35: 495 (1949).ADSCrossRefGoogle Scholar
  39. 37.
    F. Tuinstra, Structural Aspects of the Allotropy of Sulphur and Other Divalent Elements, Delft (1967).Google Scholar
  40. 38.
    D. Hohl, R.O. Jones, R. Car, and M. Parrinello, Chem. Phys. Lett. 139: 540 (1987).ADSCrossRefGoogle Scholar
  41. 39.
    R.O. Jones and D. Hohl, J. Am. Chem. Soc. 112: 2590 (1990).CrossRefGoogle Scholar
  42. 40.
    J. Harris and R.O. Jones, Phys. Rev. A 19: 1813 (1979).ADSCrossRefGoogle Scholar
  43. 41.
    R. Steudel and T. Sandow, Angew. Chem. 90: 644 (1978); Angew. Chem. Int. Ed. Engl. 17: 611 (1978).CrossRefGoogle Scholar
  44. 42.
    R.O. Jones, Inorg. Chem., to be published.Google Scholar
  45. 43.
    R. Steudel, Phosphorus and Sulphur 23: 44 (1985).Google Scholar
  46. 44.
    See, for example, C. Romers, C. Altona, H.R. Buys, and E. Havinga, Top. Stereochem. 4: 39 (1969).CrossRefGoogle Scholar
  47. 45.
    D.E.C. Corbridge, Phosphorus. An Outline of its Chemistry, Biochemistry and Technology, Elsevier, Amsterdam (1985).Google Scholar
  48. 46.
    T.P. Martin, Z. Phys. D 3: 221 (1986).ADSCrossRefGoogle Scholar
  49. 47.
    R.O. Jones and D. Hohl, J. Chem. Phys. 92: 6710 (1990)ADSCrossRefGoogle Scholar
  50. R.O. Jones and G. Seifert, J. Chem. Phys. 96: 7564 (1992).ADSCrossRefGoogle Scholar
  51. 48.
    P. Ballone and R.O. Jones, to be published.Google Scholar
  52. 49.
    H. Thurn and H. Krebs, Acta Cryst. B 25: 125 (1969).CrossRefGoogle Scholar
  53. 50.
    P.E. Eaton and T.W. Cole, Jr., J. Am. Chem. Soc. 86: 962, 3157 (1964).CrossRefGoogle Scholar
  54. 51.
    L. Cassar, P.E. Eaton, and J. Halpern, J. Am. Chem. Soc. 92: 6366 (1970).CrossRefGoogle Scholar
  55. 52.
    R. Janoschek, Chem. Ber. 125: 2687 (1992).CrossRefGoogle Scholar
  56. 53.
    M. Häser, U. Schneider, and R. Ahlrichs, J. Am. Chem. Soc. 114: 9551 (1992).CrossRefGoogle Scholar
  57. 54.
    See, for example, A.D. Becke, J. Chem. Phys. 96: 2155 (1992).ADSCrossRefGoogle Scholar
  58. B.G. Johnson, P.M.W. Gill, and J.A. Pople, J. Chem. Phys. 97: 7846 (1992).ADSCrossRefGoogle Scholar
  59. 55.
    D.E.C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier, Amsterdam (1974).Google Scholar
  60. 56.
    R.O. Jones and G. Seifert, J. Chem. Phys. 96: 2942 (1992).ADSCrossRefGoogle Scholar
  61. 57.
    See, for example, R.S. Mulliken, J. Phys. Chem. 56: 295 (1952) and references therein.CrossRefGoogle Scholar
  62. 58.
    D.M. Cox, D.J. Trevor, R.L. Whetten, E.A. Rohlfing, and A. Kaldor, J. Chem. Phys. 84: 4651 (1986)[n = 2-25].ADSCrossRefGoogle Scholar
  63. 59.
    D.M. Cox, D.J. Trevor, R.L. Whetten, and A. Kaldor, J. Phys. Chem. 92: 421 (1988)[n = 2-13].CrossRefGoogle Scholar
  64. 60.
    W.A. de Heer, P. Milani, and A. Châtelain, Phys. Rev. Lett. 63: 2834 (1989) [up to n = 61].ADSCrossRefGoogle Scholar
  65. 61.
    M.F. Jarrold, J.E. Bower, and J.S. Kraus, J. Chem. Phys. 86: 3876 (1987) [n = 3-26].ADSCrossRefGoogle Scholar
  66. L. Hanley, S.A. Ruatta, and S.L. Anderson, J. Chem. Phys. 87: 260 (1987) [n = 2-7].ADSCrossRefGoogle Scholar
  67. 62.
    G. Ganteför, M. Gausa, K.H. Meiwes-Broer, and H.O. Lutz, Z. Phys. D 9: 253 (1988) [n =3-14].ADSCrossRefGoogle Scholar
  68. K.J. Taylor, CL. Pettiette, M.J. Craycraft, O. Chesnovsky, and R.E. Smalley, Chem. Phys. Lett. 152: 347 (1988) [n = 3-32].ADSCrossRefGoogle Scholar
  69. 63.
    C.Y. Cha, G. Ganteför, and W. Eberhardt, J. Chem. Phys. 100 (1994), in press).Google Scholar
  70. 64.
    S.C. O’Brien, Y. Liu, Q. Zhang, J.R. Heath, F.K. Tittel, R.F. Curl, and R.E. Smalley, J. Chem. Phys. 84: 4074 (1986).ADSCrossRefGoogle Scholar
  71. 65.
    R.O. Jones, Phys. Rev. Lett. 67: 224 (1991); J. Chem. Phys. 99: 1194 (1993).ADSCrossRefGoogle Scholar
  72. 66.
    H.G. von Schnering and R. Nesper, Acta Chem. Scand. 45: 870 (1991).CrossRefGoogle Scholar
  73. 67.
    K.K. Sunil and K.D. Jordan, J. Phys. Chem. 92: 2774 (1988).CrossRefGoogle Scholar
  74. 68.
    C.W. Bauschlicher, Jr., H. Partridge, S.R. Langhoff, P.R. Taylor, and S.P. Walch, J. Chem. Phys. 86: 7007 (1987).ADSCrossRefGoogle Scholar
  75. 69.
    U. Meier, S.D. Peyerimhoff, and F. Grein, Z. Phys. D 17: 209 (1990).ADSCrossRefGoogle Scholar
  76. 70.
    M.F. Cai, T.P. Djugan, and V.E. Bondybey, Chem. Phys. Lett. 155: 430 (1989).ADSCrossRefGoogle Scholar
  77. 71.
    M. Dupuis and B. Liu, J. Chem. Phys. 68: 2902 (1978).ADSCrossRefGoogle Scholar
  78. 72.
    V.A. Polukhin and M.M. Dzugotov, Phys. Met. Metall. 51: 50 (1981).Google Scholar
  79. J. Hafner, J. Non-Crystalline Solids 117/118: 18 (1990).ADSCrossRefGoogle Scholar
  80. 73.
    The multiplet averaged values are B 3.57 eV; Al 3.47 eV; Ga 4.71 eV; In 4.35 eV; Tl 5.64 eV. See C.E. Moore, Atomic Energy Levels, National Bureau of Standards Circular 467, USGPO, Washington. Vol. I (1949), Vol. II (1952), Vol. III (1958).Google Scholar
  81. 74.
    J.P. Desclaux, At. Data Nucl. Data Tables 12: 311 (1973).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • R. O. Jones
    • 1
  1. 1.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations