Advertisement

Charged-Particle Transport in Biomolecular Media: The Third Generation

  • M. Zaider
  • A. Fung
  • M. Bardash
Part of the Basic Life Sciences book series (BLSC, volume 63)

Abstract

We describe Monte Carlo codes that simulate, event by event, the interaction of energetic electrons with a double-stranded DNA molecule and with the condensed water surrounding it. Both direct and indirect effects are treated explicitly. The cross-sectional input necessary in the transport codes was obtained via quantum-mechanical calculations of the dielectric response function, ε(q,ω), of polycytidine. For each inelastic event on DNA we score the energy deposited locally, the position of the event and the moiety that underwent that event. This information provides a detailed picture of the spatial disposition of molecular alterations for DNA exposed to ionizing radiation.

Keywords

Differential Cross Section Random Phase Approximation Relative Biological Effectiveness Excitonic Transition Transport Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Ward, Biochemistry of DNA lesions, Radiat. Res. 104: S103 — S111 (1985).CrossRefGoogle Scholar
  2. 2.
    H.G. Paretzke and M.J. Berger, Stopping power and energy degradation for electrons in water vapor, in: (ed): 6th symp. on microdosimetry, Brussels,London: Harwood Academic Publishers,CEC, pp. 749–58 (1978).Google Scholar
  3. 3.
    J.E. Turner, R.N. Hamm, H.A. Wright, J.T. Modolo, and G.M.A.A. Sardi, Monte Carlo calculations of initial energies of Compton electrons and photoelectrons in water irradiated by photons with energies up to 2 MeV, Health Phys. 39: 49–55 (1980).PubMedCrossRefGoogle Scholar
  4. 4.
    M. Zaider, D.J. Brenner and W.E. Wilson, The application of track calculations to radiobiology.-I. Monte Carlo simulation of proton tracks, Radiat. Res. 95: 231–247 (1983).CrossRefGoogle Scholar
  5. 5.
    J.E. Turner, H.G. Paretzke, R.N. Hamm, H.A. Wright, and R.H. Ritchie, Comparative study of electron energy deposition and yields in water in the liquid and vapor phases, Radiat. Res. 92: 47–60 (1982).CrossRefGoogle Scholar
  6. 6.
    M. Zaider, M.G. Vracko, A.Y.C. Fung, and J.L. Fry, Electron transport in condensed water, Radiat. Prot. Dos. 52: 139–146 (1994).Google Scholar
  7. 7.
    D.E. Charlton, H. Nikjoo, and J.L. Humm, Calculation of initial yields of single-and double-strand breaks in cell nuclei from electrons, protons and alpha particles, Int. J. Radiat. Biol. 56: 1–19 (1989).PubMedCrossRefGoogle Scholar
  8. 8.
    M. Bardash and M. Zaider, A stochastic treatment of radiation damage to DNA from indirect effects, Radiat. Prot. Dos. 51: 171–176 (1994).Google Scholar
  9. 9.
    P. Schattschneider, “Fundamentals of Inelastic Electron Scattering,” Springer Verlag, New York (1986).Google Scholar
  10. 10.
    M.W. Williams and E.T. Arakawa, Optical and dielectric properties of materials relevant to biological research, in: “Handbook on Synchrotron Radiation,” Elsevier, New York (1990).Google Scholar
  11. 11.
    D. Pines and P. Nozieres, “The Theory of Quantum Liquids,” Benjamin, New York (1966).Google Scholar
  12. 12.
    L. Hedin and S. Lundqvist, Effects of electron-electron and electron-phonon interactions on the one-electron states of solids, Solid State Phys. 23: 1–181 (1969).CrossRefGoogle Scholar
  13. 13.
    F. Bassani, G. Pastori Parravicini, and R.A. Ballinger, Electronic states and optical transitions in solids, Pergamon Press (1975).Google Scholar
  14. 14.
    F.C. Bernstein, T.F. Koetzle, G.J.B. Williams, E.F. Meyer, M.D. Brice, J.R. Rodgers, O. Kennard, T. Shimanouchi, and M. Tasumi, The protein data bank: a computer based archival file for macromolecular structures, J. Mol. Biol. 112: 535–542 (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Inagaki, R.N. Hamm, E.T. Arakawa, and L.R. Painter, Optical and dielectric properties of DNA in the extreme ultrviolet, J. Chem. Phys. 61: 4246–4250 (1974).CrossRefGoogle Scholar
  16. 16.
    R.H. Ritchie and J.C. Ashley, The interaction of hot electrons with a free electron gas, J. Phys. Chem. Solids 26: 1689–1694 (1965).CrossRefGoogle Scholar
  17. 17.
    M.G. Vracko and M. Zaider, A study of the excited states in cytosine and guanine stacks in the HartreeFock and exciton approximations, Radiat. Res. 138: 18–25 (1994).CrossRefGoogle Scholar
  18. 18.
    C. Von Sonntag. “The Chemical Basis of Radiation Biology,” Taylor Francis, Philadelphia (1987).Google Scholar
  19. 19.
    C.D. Jonah, M.S. Matheson, J.R. Miller, and E.J. Hart, Yield and decay of the hydrated electron from 100 ps to 3 ns, J. Phys. Chem. 80: 1267–70 (1976).CrossRefGoogle Scholar
  20. 20.
    A.M. Kellerer and D. Chmelevsky, Concepts of microdosimetry. III. Mean values of the microdosimetric distributions, Radiat. Environ. Biophys. 12: 321–335 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • M. Zaider
    • 1
  • A. Fung
    • 1
  • M. Bardash
    • 2
  1. 1.Center for Radiological ResearchColumbia UniversityNew YorkUSA
  2. 2.Department of Radiation OncologyColumbia UniversityNew YorkUSA

Personalised recommendations