Skip to main content

Interactions of Low-Energy Electrons with Condensed Matter: Relevance for Track Structure

  • Chapter

Part of the book series: Basic Life Sciences ((BLSC,volume 63))

Abstract

Here we review the state of knowledge about the transport of subexcitation electrons in water. Longitudinal optical phonon and acoustical phonon interactions with an electron added to the system can give rise to an increase in the effective mass of the electron and to its damping. We generalize the pioneering treatment of thermalization given by Frölich and Platzman to apply to both long-range, polarization-type interactions, and as well to short-range interactions of low-energy electrons in water. When an electron is ejected from a molecule in condensed matter quantum interference may take place between the various excitation processes occuring in the medium. We have estimated the magnitude of this interference effect, together with the effect of Coulombic interactions on the thermalization of subexcitation electrons generated in the vicinity of a track of positive ions in water.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barker, G.C., Gardner, A.W., and Sammon, D.C., 1966, Photocurrents produced by ultraviolet irradiation of mercury electrodes, J. Electrochem. Soc. 113:1182

    Google Scholar 

  • Bolch, W.E., Turner, J.E., Yoshida, H., Jacobson, K. B., Hamm, R.N., Wright, H.A., Ritchie, R.H., and Klots, C.E., 1988, Monte Carlo simulation of indirect damage to biomolecules irradiated in aqueous solution - the radiolysis of glycylglycine, Oak Ridge National Laboratory Technical Report ORNIJTM-10851

    Google Scholar 

  • Cohen, M. and J. Lekner, J., 1967, Theory of hot electrons in gases, liquids and solids, Phys. Rev. 158:305 Danjo, A. and Nishimura, H., 1985, Elastic scattering of electrons from H2O molecule, J. Phys. Soc. Japan, 54: 1224

    Google Scholar 

  • Davis, H.T., Schmidt, L.D., and Minday, R.M., 1971, Kinetic theory of excess electrons in polyatomic gases, liquids, and solids, Phys. Rev. A3: 1027

    Article  Google Scholar 

  • Fano, U. and Du, N.-Y., 1991, Dissipative polarization by slow electrons, Appl. Rad. Isot. 42: 975, and references given therein.

    Google Scholar 

  • Frölich, H., and Platzman, R.L., 1953, Energy loss of moving electrons to dipolar relaxation, Phys. Rev. 92: 1152

    Article  Google Scholar 

  • Goulet, T. and Jay-Gerin, J.-P., 1988, Thermalization distances and times for subexcitation electrons in solid water, J. Phys. Cheni. 92: 6871 (1988)

    Google Scholar 

  • Gras-Marti, A, and Ritchie, R.H., 1985, Charged-particle excitation of ripplon fields, Phys. Rev. B31: 2649

    Article  CAS  Google Scholar 

  • Hart, E.J., and Platzman, R.L., 1961, Radiation chemistry, in: “Mechanisms in Radiobiology,” A. Forssberg and M. Errera, eds., Academic Press, New York, p. 63

    Google Scholar 

  • Ibach, H. and Lehwald, S., 1980, The bonding of water molecules to platinum surfaces, Surf. Sci., 91: 187

    Article  CAS  Google Scholar 

  • Ishii, M. A., Kimura, M. and Inokuti, M. 1990, Electron degradation and yields of initial products. VII. Subexcitation electrons in gaseous and solid H2O, Phys. Rev. A42: 6486

    Article  CAS  Google Scholar 

  • Itikawa, Y., 1978, Momentum-transfer cress sections for electron collisions with atoms and molecules-revision and supplement, Atomic Data and Nuclear Data Tables, 21: 69

    Article  CAS  Google Scholar 

  • Kaplan, I.G. and Miterev, A.M., Interaction of charged particles with molecular medium and track effects on radiation chemistry. in: “Advances in Chemical Physics,” I. Prigogine and S.A. Rice, eds., Wiley, New York (1987)

    Google Scholar 

  • Kestner, N.R., 1987, Theoretical studies of electrons in fluids, in:“The Liquid State and its Electrical

    Google Scholar 

  • Properties“ E. E. Kunhardt, L. G. Christophorou, and L. H. Luessen, eds., Plenum, New York

    Google Scholar 

  • Knipp, P., 1988, Interaction of slow electrons with density fluctuations in condensed materials: calculation of stopping power, Phys. Rev. B37: 12

    Article  Google Scholar 

  • Konovalov, V.V., Raitsmiring, A.M., Tsvetkov, Y.D., and Benderskii, V. A., 1985, The thermalization length of low-energy electrons determined by nanosecond photoemission into aqueous electrolyte solutions, Chem. Phys. 93: 163

    Article  CAS  Google Scholar 

  • Konovalov, V.V., Raitsmiring, A.M., and Tsvetkov, Y.D., 1986, Determination of the thermalization length of low-energy electrons in H2O and D20 solutions by photoelectric emission, High Energy Chem. 18: 1

    Google Scholar 

  • Kreitus, I.V., Benderskii, V.A., Beskrovnyi, V.M., and Tiliks, Yu.E., 1982, Thermalization length of low energy electrons in concentrated aqueous solutions of electrolytes, Khimiya Vysosokikh Energii 16: 112

    CAS  Google Scholar 

  • LaVerne, J.A., and Mozumder, A., 1984, Energy loss and thermalization of low-energy electrons, Radiat. Phys. Chem. 23: 637

    Article  CAS  Google Scholar 

  • Lekner, J., 1967, Motion of electrons in liquid argon, Phys. Rev. 158: 130

    Article  CAS  Google Scholar 

  • Magee, J.L., 1977, Electron energy loss processes at subelectronic excitation energies in liquids, Can. J. Chem. 55: 1847

    Article  CAS  Google Scholar 

  • Michaud, M. and Sanche, L., 1987a, Total cross sections for slow-electron (1–20 eV) scattering in solid H2O, Phys. Rev. A36: 4672

    CAS  Google Scholar 

  • Michaud, M. and Sanche, L., 1987b, Absolute vibrational excitation cross sections for slow-electron (1–18 eV) scattering in solid H2O, Phys. Rev. A36: 4684

    Article  CAS  Google Scholar 

  • Michaud, M, 1993, private communication. Mozumder, A., and Magee, J.L., 1967, Theory of radiation chemistry VIII. Ionization of nonpolar liquids by radiation in the absence of external electric fields, J. Chem. Phys. 47: 939

    Google Scholar 

  • Neff, H., Sass, J.K., Lewerenz, H.J., and Ibach. I., 1980, Photoemission studies of electron localization at very low excess energies, J.Phys. Chem. 84: 1135

    Article  CAS  Google Scholar 

  • Onsager, L., 1938, Initial recombination of ions, Phys. Rev. 54: 554

    Article  CAS  Google Scholar 

  • Paretzke, H.G., Turner, J.E., Hamm, R.N., Ritchie, R.H., and Wright, H.A., 1991, Spatial distributions of inelastic events produced by electrons in gaseous and liquid water, Radiation Research 127: 121

    Article  PubMed  CAS  Google Scholar 

  • Platzman R.L. 1955, Subexcitation electrons, Rad. Res. 2: 1

    Article  CAS  Google Scholar 

  • Ritchie, R.H., Hamm, R.N., Turner, J.E., Wright, H.A., and Bolch, W.E., 1990, Radiation interactions and energy transport in the condensed phase, in: “Physical and Chemical Mechanisms in Molecular Radiation Biology,” W. A. Glass and M. N. Varma, eds., J. Wiley, New York.

    Google Scholar 

  • Rotenberg, Z.A. and Gurevich, Yu.Ya., 1975, Photodiffusion phenomena stimulated by photoelectron emission in solutions, J. Electroanal. Chem. 66: 165

    Article  CAS  Google Scholar 

  • Samuel, A.H., and Magee, J.L., 1953, Theory of track effects in radiolysis of water, J. Chem. Phys. 21: 1080

    Article  CAS  Google Scholar 

  • Voltz, R., 1991, Thermalization of subexcitation electrons in dense molecular matter, in: “Excess Electrons in Dielectric Media,” CRC Press, Cleveland, OH, (1991), e.g., and references quoted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ritchie, R.H., Hamm, R.N., Turner, J.E., Bolch, W.E. (1994). Interactions of Low-Energy Electrons with Condensed Matter: Relevance for Track Structure. In: Varma, M.N., Chatterjee, A. (eds) Computational Approaches in Molecular Radiation Biology. Basic Life Sciences, vol 63. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9788-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9788-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9790-9

  • Online ISBN: 978-1-4757-9788-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics