Advertisement

Interpretation of Point Correspondences

  • Amar Mitiche
Part of the Advances in Computer Vision and Machine Intelligence book series (ACVM)

Abstract

We want to study the problem of recovering the position and displacement of a rigid body in space from its projections on a plane. We are particularly interested in computational schemes that take rigid point structures into account. A rigid point structure is a finite subfamily of points of a rigid body.

Keywords

IEEE Transaction Rigid Body Motion Estimation Final Position Rotation Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ullman, The Interpretation of Visual Motion, MIT Press, Cambridge, MA (1979).Google Scholar
  2. 2.
    J. Roach and J. K. Aggarwal, Determining the Movement of Objects from a Sequence of Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 2, No. 6, 1980, pp. 554–562.Google Scholar
  3. 4.
    R. Y. Tsai and T. S. Huang, Uniqueness and Estimation of Three-Dimensional Motion Parameters of Rigid Objects with Curved Surfaces, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, No. 1, 1984, pp. 13–26.MathSciNetCrossRefGoogle Scholar
  4. 5.
    M. E. Spetsakis and J. Aloimonos, Optimal Motion Estimation, in: IEEE Workshop on Visual Motion, Irvine, CA, pp. 229–237 (1989).Google Scholar
  5. 6.
    O. Faugeras, F. Lustman, and G. Toscani, Motion and Structure from Motion from Point and Line Matches, in: Proceedings of the First International Conference on Computer Vision, London, pp. 25–34 (1987).Google Scholar
  6. 7.
    K. S. Arun, T. S. Huang, and S. D. Blostein, Least-Squares Fitting of Two 3D Point Sets, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 5, 1987, pp. 698–700.CrossRefGoogle Scholar
  7. 8.
    J. Weng, T. S. Huang, and N. Ahuja, Motion and Structure from Two Perspective Views: Algorithms, Error Analysis, and Error Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 5, 1989, pp. 13–26.CrossRefGoogle Scholar
  8. 9.
    H. C. Longuet-Higgins, The Visual Ambiguity of a Moving Plane, Proceedings of the Royal Society of London B, Vol. 233, 1984, pp. 165–175.CrossRefGoogle Scholar
  9. 10.
    H. C. Longuet-Higgins, Multiple Interpretations of a Pair of Images, Proceedings of the Royal Society of London A, Vol. 418, 1988, pp. 1–15.MathSciNetCrossRefGoogle Scholar
  10. 11.
    X. Zhuang, T. S. Huang, and R. M. Haralick, Two-View Motion Analysis: A Unified Algorithm, Journal of the Optical Society of America A, Vol. 3, No. 9, 1986, pp. 1492–1500.CrossRefGoogle Scholar
  11. 12.
    M. Demazure, Sur Deux Problèmes de Reconstruction, INRIA Technical Report No. 882, 1988.Google Scholar
  12. 13.
    O. Faugeras and S. J. Maybank, Motion from Point Matches: Multiplicity of Solutions, International Journal of Computer Vision, Vol. 4, 1990, pp. 225–246.CrossRefGoogle Scholar
  13. 14.
    T. S. Huang and O. Faugeras, Some Properties of the E-Matrix in Two-View Motion Estimation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 11, No. 12, 1989, pp. 1310–1312.CrossRefGoogle Scholar
  14. 15.
    T. S. Huang and Y. S. Shim, Linear Algorithm for Motion Estimation: How to Handle Degenerate Cases, in: Proceedings of the British Pattern Recognition Association Conference, Cambridge, UK, pp. 439–447 (1988).Google Scholar
  15. 16.
    Y. Yatsumoto and G. Medioni, Robust Estimation of Three-Dimensional Motion Parameters from a Sequence of Image Frames Using Regularization, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 8, No. 4, 1986, pp. 464–471.CrossRefGoogle Scholar
  16. 17.
    D. C. Hoaglin, F. Mosteller, and J. W. Tuckey, Understanding Robust and Exploratory Data Analysis, John Wiley, New York (1983).MATHGoogle Scholar
  17. 18.
    P. J. Rousseeuw and A. M. Leroy, Robust Regression and Outliers Detection, John Wiley, New York (1987).CrossRefGoogle Scholar
  18. 19.
    G. Dahlquist and A. Bjork, Numerical Methods, Prentice Hall, Englewood Cliffs, NJ (1974).Google Scholar
  19. 20.
    C. Lee, R. M. Haralick, and X. Zhuang, Recovering 3D Motion Parameters from Image Sequences with Gross Errors, in: Proceedings of the IEEE Workshop on Visual Motion, Irvine, CA, pp. 46–53 (1989).Google Scholar
  20. 21.
    S. Ullman, Maximizing Rigidity: The Incremental Recovery of 3D Structure from Rigid and Non-rigid Motion, Perception, Vol. 13, 1984, pp. 255–274.CrossRefGoogle Scholar
  21. 22.
    J. A. Webb and J. K. Aggarwal, Structure from Motion of Rigid and Jointed Objects, Artificial Intelligence, Vol. 19, 1982, pp. 107–130.CrossRefGoogle Scholar
  22. 23.
    H. Shariat and K. Price, Motion Estimation Using More than Two Views, in: Motion Understanding: Robot and Human Vision (W. N. Martin and J. K. Aggarwal, Eds.), pp. 143–188, Kluwer Academic, Hingham, MA (1988).Google Scholar
  23. 24.
    J. Weng, T. S. Huang, and N. Ahuja, 3D Motion Estimation, Understanding, and Prediction from Noisy Images, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, No. 3, 1987, pp. 370–389.CrossRefGoogle Scholar
  24. 25.
    A. Mitiche, S. Seida, and J. K. Aggarwal, Using Constancy of Distance to Estimate Position and Displacement in Space, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 10, No. 4, 1988, pp. 594–599.CrossRefGoogle Scholar
  25. 26.
    T. S. Huang and R. Y. Tsai, Image Sequence Analysis: Motion Estimation, in: Image Sequence Processing and Dynamic Scene Analysis (T. S. Huang, ed.), pp. 1–18, Springer-Verlag, New York (1981).Google Scholar
  26. 27.
    C. Jerian and R. Jain, Polynomial Methods for Structure from Motion, in: Proceedings of the Second International Conference on Computer Vision, Tampa, FL, pp. 197–206 (1988).Google Scholar
  27. 28.
    A. N. Netravali, T. S. Huang, A. S. Krishnakumar, and R. J. Holt, Algebraic Methods in 3D Motion Estimation from Two-View Point Correspondences, International Journal of Imaging Systems and Technology, Vol. I, 1989, pp. 78–99.Google Scholar
  28. 29.
    B. K. P. Horn, Closed-Form Solution of Absolute Orientation Using Quaternions, Journal of the Optical Society of America A, Vol. 4, No. 4, 1987, pp. 629–642.MathSciNetCrossRefGoogle Scholar
  29. 30.
    C. P. Jerian and R. Jain, Structure and Motion: a Critical Analysis of Methods, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 21, 1991, pp. 572–588.MathSciNetCrossRefGoogle Scholar
  30. 31.
    B. K. P. Horn, H. Hilden, and S. Negandaripour, Closed-form Solution of Absolute Orientation Using Orthonormal Matrices, Journal of the Optical Society of America A, Vol. 5, 1988, pp. 1127–1135.MathSciNetCrossRefGoogle Scholar
  31. 32.
    S. Umeyama, Least-Squares Estimation of Transformation Parameters Between Two Point Patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 13, No. 4, 1991, pp. 376–380.CrossRefGoogle Scholar
  32. 33.
    O. Faugeras and M. Hebert, A 3D Recognition and Positioning Algorithm Using Geometrical Matching Between Primitive Surfaces, in: Proceedings of the International Joint Conference on Artificial Intelligence, pp. 996–1002 (1983).Google Scholar
  33. 34.
    O. Faugeras and M. Hebert, The Representation, Recognition, and Locating of 3D objects, International Journal of Robotics Research, Vol. 5, 1986, pp. 27–52.CrossRefGoogle Scholar
  34. 35.
    S. D. Blostein and T. S. Huang, Algorithms for Motion Estimation Based on Three-Dimensional Correspondences, in: Motion Understanding: Robot and Human Vision (W. N. Martin and J. K. Aggarwal, Eds.), pp. 329–352, Kluwer Academic, Hingham, MA (1988).Google Scholar
  35. 36.
    S. D. Blostein and T. S. Huang, Quantization Errors in Stereo Triangulation, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 9, 1987, pp. 752–765.CrossRefGoogle Scholar
  36. 37.
    L. Matthies and S. Shafer, Error Modeling in Stereo Navigation, IEEE Transactions on Robotics and Automation, Vol. 3, 1987, pp. 239–248.CrossRefGoogle Scholar
  37. 38.
    S. M. Kiang, R. J. Chou, and J. K. Aggarwal, Triangulation Errors in Stereo Algorithms, in: Proceedings of the IEEE Workshop on Computer Vision, Miami Beach, FL, pp. 72–78 (1987).Google Scholar
  38. 39.
    R. O. Duda and P. E. Hart, Pattern Recognition and Image Analysis, John Wiley, New York (1972).Google Scholar

Bibliography

  1. 1.
    J. K. Aggarwal and N. Nandhakumar, On the Computation of Motion from a Sequence of Images: A Review, Proceedings of the IEEE, Vol. 76, No. 8, 1988, pp. 917–935.CrossRefGoogle Scholar
  2. 2.
    J. Aloimonos and I. Rigoutsos, Determining the 3D Motion of a Rigid Planar Patch Without Correspondence Using Perspective Projection, in: Proceedings of the IEEE Workshop on Motion: Representation and Analysis, Charleston, SC, pp. 167–174 (1986).Google Scholar
  3. 3.
    M. L. Braunstein, D. D. Hoffman, and L. Shapiro, Minimum Points and Views for the Recovery of Three-Dimensional Structure, Journal of Experimental Psychology: Human Perception and Performance, Vol. 13, No. 3, 1987, pp. 334–343.CrossRefGoogle Scholar
  4. 4.
    J. Q. Fang and T. S. Huang, Some Experiments on Estimating the 3D Motion Parameters of a Rigid Body from Two Consecutive Image Frames, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 6, 1984, pp. 545–554.CrossRefGoogle Scholar
  5. 5.
    M. Fischler and R. C. Bolles, Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis, Communications of the ACM, Vol. 24, No. 6, 1989, pp. 381–395.MathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Ganapathy, Decomposition of Transformation Matrices, Pattern Recognition Letters, Vol. 2, 1989, pp. 401–412.CrossRefGoogle Scholar
  7. 7.
    D. Hoffman and B. Bennet, The Reconstruction of Structure from Fixed-Axis Assumption, Biological Cybernetics, Vol. 54, 1986, pp. 71–83.MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    R. Horaud, B. Conio, O. Leboullenx, and B. Lacolle, An Analytic Solution for the Perspective 4-Point Problem, Computer Vision, Graphics, and Image Processing, Vol. 47, No. 1, 1989, pp. 33–44.Google Scholar
  9. 9.
    B. K. P. Hom, Robot Vision, MIT Press, Cambridge, MA (1986).Google Scholar
  10. 10.
    T. S. Huang and C. H. Lee, Motion and Structure from Orthographic Projections, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol 11, No. 5, 1989, pp. 536540.Google Scholar
  11. 11.
    Y. C. Kim and J. K. Aggarwal, Determining Object Motion in a Sequence of Stereo Images, IEEE Journal on Robotics and Automation, Vol. 3, No. 6, 1987, pp. 599–614.CrossRefGoogle Scholar
  12. 12.
    S. Lee and Y. Kay, A Kalman Filter Approach for Accurate 3-D Motion Estimation from a Sequence of Stereo Images, Computer Vision, Graphics, and Image Processing: Image Understanding, Vol. 54, No. 2, 1991, pp. 244–258.MATHCrossRefGoogle Scholar
  13. 13.
    D. Man and T. Poggio, A Computational Theory of Human Stereo Vision, Proceedings of the Royal Society of London B, Vol. 204, 1979, pp. 301–328.CrossRefGoogle Scholar
  14. 14.
    W. N. Martin and J. K. Aggarwal, Dynamic Scene Analysis: A Survey, Computer Graphics and Image Processing, Vol. 7, 1978, pp. 356–374.CrossRefGoogle Scholar
  15. 15.
    A. Z. Meiri, On Monocular Perception of 3D Moving Objects IEEE Transactions on Pattern Analysis and Machine IntelligenceVol. 2, 1980, pp. 582–583. Google Scholar
  16. 16.
    H. H. Nagel, Representation of Moving Rigid Objects Based on Visual Observation, IEEE Computer, Vol. 14, No. 8, Aug. 1981, pp. 29–39.MathSciNetCrossRefGoogle Scholar
  17. 17.
    H. H. Nagel, Image Sequences — Ten (Octal) Years: From Phenomenology towards a Theoretical Foundation, in: Proceeding of the International Conference on Pattern Recognition, pp. 1174–1185 (1986).Google Scholar
  18. 18.
    R. Y. Tsai and T. S. Huang, Estimating Three-Dimensional Motion Parameters of a Rigid Planar Patch, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 29, No. 6, 1981, pp. 1147–1152.Google Scholar
  19. 19.
    R. Y. Tsai, T. S. Huang, and W. Zhu, Estimating Three-Dimensional Motion Parameters of a Rigid Planar Patch, II: Singular Value Decomposition, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 30, No. 4, 1982, pp. 525–534.Google Scholar
  20. 20.
    R. Y. Tsai and T. S. Huang, Estimating Three-Dimensional Motion Parameters of a Rigid Planar Patch, III: Finite Point Correspondences and the Three-View Problem, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 32, No. 2, 1984, pp. 213–220.Google Scholar
  21. 21.
    S. Ullman, The Interpretation of Structure from Motion, Proceedings of the Royal Society of London B, Vol. 203, 1979, pp. 405–426.CrossRefGoogle Scholar
  22. 22.
    S. Ullman, Analysis of Visual Motion by Biological and Computer Systems, IEEE Computer, Vol. 14, No. 8, 1981, pp. 57–69.CrossRefGoogle Scholar
  23. 23.
    S. Ullman, Recent Computational Studies in the Interpretation of Structure from Motion, in: Human and Machine Vision (B. Hope and A. Rosenfeld, Eds.), pp. 459–480, Academic Press, Orlando, FL (1981).Google Scholar
  24. 24.
    S. Ullman, Competence, Performance, and the Rigidity Assumption, Perception, Vol. 15, 1986, pp. 644–646.Google Scholar
  25. 25.
    J. A. Webb and J. K. Aggarwal, Visually Interpreting the Motion of Objects in Space IEEE ComputerVol. 14, No. 8, 1981, pp. 40–46. Google Scholar
  26. 26.
    B. L. Yen and T. S. Huang, Determining the 3D Motion and Structure of a Rigid Object Using Spherical Projections, Computer Vision, Graphics, and Image Processing, Vol. 21, 1983, pp. 21–32.Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Amar Mitiche
    • 1
  1. 1.INRS-TelecommunicationsMontrealCanada

Personalised recommendations