Geometric Realizations of Uniformization of Conjugates of Hermitian Locally Symmetric Manifolds

  • Ngaiming Mok
  • Sai Kee Yeung
Part of the The University Series in Mathematics book series (USMA)


Let Γ be a bounded symmetric domain, Γ ⊂ Aut(Ω) a torsion-free discrete group of holomorphic automorphisms such that the quotient manifold X = Ω/Γ is of finite volume with respect to the Bergman metric. The manifold X is either algebraic or biholomorphic to a quasi-projective variety, according to Satake, Baily, and Borel [3, 22] for the higher-rank case and to Siu and Yau [24] for the rank-1 case. Fix an embedding of X into a projective space PN and identify X with such a variety. Let σ ∈ Gal(C/Q, and let X σ denote the quasi-projective variety obtained by applying σ to the defining equations of X in P N . By a theorem of Kazhdan [11] in the compact case and a theorem of Borovoy and Kazhdan [5,12] in the general case, X σ ≅ Ω/Γ σ for some torsion-free discrete group of holomorphic automorphisms Γ σ ⊂ Aut(Ω) such that X σ is of finite volume with respect to the Bergmann metric.


Vector Bundle Line Bundle Hermitian Manifold Chern Number Holomorphic Automorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ash, D. Mumford, M. Rappoport, and Y-S. Tai, Smooth Compactification of Locally Symmetric Varieties, Lie Groups: History, Frontier and Applications, Vol. 4, Math. Sci. Press, Brookline (1975).Google Scholar
  2. 2.
    T. Aubin, Réduction du cas positif de l’équation de Monge-Ampère sur les variétés Kählèri-ennes compactes à la dimonstration d’une inequalité, J. Funct. Anal. 57, 143–153 (1984).zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    W. L. Baily, Jr. and A. Borel, Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. 84, 442–528 (1966).zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    M. Berger, Sur les groupes d’holonomie des variets à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83, 279–330 (1955).zbMATHMathSciNetGoogle Scholar
  5. 5.
    M. Borovoy, Shimura-Deligne schemes Mc(G,h) and the rational cohomology (G,p)-classes for abelian varieties, in Group Theory and Homological Algebra, Vol. 1, Jaroslavel (1977).Google Scholar
  6. 6.
    T. Bröcker and T. Dreck, Representation of Compact Lie Groups, Graduate Texts in Math., Vol. 93, Springer-Verlag, Berlin (1985).CrossRefGoogle Scholar
  7. 7.
    S-Y. Cheng and S-T. Yau, Differential equations on riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28, 333–345 (1975).zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    S. K. Donaldson, Anti-self-dual Yang-Mills connection over complex algebraic surfaces and stable vector bundles, Proc. London Math. Soc. (3)50, 1–26 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    S. Helgason, Differential Geometry and Symmetric Spaces, Academic Press, New York (1978).zbMATHGoogle Scholar
  10. 10.
    D. Johnson and J. Millson, Deformation spaces associated to compact hyperbolic manifolds, Bull. Am. Math. Soc. (NS) 14, no.1, 99–102 (1986).zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    D. Kazhdan, On arithmetic varieties, in Lie Groups and Their Representations (I. M. Gelfand, ed.), Akad. Kiadó, Budapest (1975).Google Scholar
  12. 12.
    D. Kazhdan, On arithmetic varieties. II, Israel J. Math. 44, 139–159 (1983).zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    R. Kobayashi, Einstein-Kähler V-metric on open Satake V-surfaces with isolated singularities, Math. Ann.272, 385–398 (1985).zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    S. Kobayashi and T. Ochiai, Holomorphic structures modelled after compact hermitian symmetric spaces, Manifolds and Lie Groups (Notre Dame, Ind.), pp. 207–222 (1980).Google Scholar
  15. 15.
    N. Mok, Metric Rigidity Theorems on Hermitian Locally Symmetric Manifolds, World Science Publishing, Singapore (1989).zbMATHCrossRefGoogle Scholar
  16. 16.
    N. Mok and I-S. Tsai, Rigidity of convex realizations of irreducible bounded symmetric domains of rank ≥2, to appear in Journal für die riene und angewandte Math. Google Scholar
  17. 17.
    N. Mok and J-Q. Zhong, Compactifying complete Kähler manifolds of finite topological type and bounded curvature, Ann. of Math. 129, 417–470 (1989).MathSciNetGoogle Scholar
  18. 18.
    D. Mumford, Hirzebruch proportionality principle in the non compact case, Invent. Math. 42, 239–272 (1977).zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    A. Nadel and H. Tsuji, Compactification of complete Kähler manifolds of negative curvature, J. Diff. Geom. 28, 503–512 (1988).zbMATHMathSciNetGoogle Scholar
  20. 20.
    C. Oknonek, M. Schneider, and H. Sprindler, Vector Bundles on Complex Projective Spaces, Birkhäuser, Boston (1980).CrossRefGoogle Scholar
  21. 21.
    M. S. Raghunathan, On the first cohomology of discrete subgroups of semi-simple Lie group, Am. J. Math. 87, 103–138 (1965).zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    I. Satake, On the compactification of the Siegel space, J. Indian Math. Soc. 20, 259–281 (1956).zbMATHMathSciNetGoogle Scholar
  23. 23.
    C. Simpson, System of hodge bundles and uniformation, Harvard thesis (1986).Google Scholar
  24. 24.
    Y.-T. Siu and S.-T. Yau, Compactification of negatively curved complete Kähler manifolds of finite volume, in Seminar on Differential Geometry (S. T. Yau, ed.), Princeton University Press, Princeton (1982); Ann. Math. Stud. 102, 363–380 (1982).Google Scholar
  25. 25.
    G. Tian and S-T. Yau, Existence of Kähler Einstein metrics on complete Kähler manifolds and their application to algebraic geometry, in Mathematical Aspects of String Theory, pp. 574–628, World Science Publishing, Singapore (1987).Google Scholar
  26. 26.
    H. Tsuji, A characterization of ball quotients with smooth boundary, Duke Math. J. 57, 537–553 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    S-T. Yau, On the Ricci curvature of a compact Kähler manifold and complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31, 339–411 (1978).zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    S-T. Yau, Uniformation of geometric structures in Mathematical Heritage of Hermann Weyl, Proc. Symp. Pure Math., Vol. 48, pp. 265–274, American Mathematical Society, Providence, RI (1988).CrossRefGoogle Scholar
  29. 29.
    S-T. Yau and F-Y. Zheng, Remarks on certain higher dimensional quasi-Fuschian domains, preprint (1991).Google Scholar
  30. 30.
    S-K. Yeung, Compactification of complete Kähler manifold with negative Ricci curvature, to appear in Invent. Math. 106, 13–25 (1991).zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Ngaiming Mok
    • 1
  • Sai Kee Yeung
    • 2
  1. 1.Centre d’OrsayUniversité de Paris-SudOrsay CedexFrance
  2. 2.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations