A Characterization of K-Invariant Stein Domains in Symmetric Embeddings

  • Alan T. Huckleberry
  • G. Fels
Part of the The University Series in Mathematics book series (USMA)


Let K be a connected compact Lie group acting as a group of holomorphic transformations on a Stein space Ω. In this case there exists a universal complexification Ω that is a Stein space equipped with a holomorphic K -action and a K-equi variant open embedding ι:Ω↩Ω so that, if φ: Ω → Z is any holomorphic K-equivariant mapping into a K -space Z, there exists Ψ : Ω → Z so that φ = Ψ ° ι[4]. Thus, when studying the complex geometry of a K-action on a Stein space Ω, we need only study K-invariant Stein domains in a Stein K -space X. A natural starting point is the consideration of spaces Ω that appear as fibers of the categorical quotient Ω→Ω||K; i.e., the only K-invariant holomorphic functions on Ω are the constants O(Ω) K ≅ ℂ. It follows that Ω is an affine K -space [10].


Weyl Group Open Orbit Categorical Quotient Reinhardt Domain Stein Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Bedford and J. Dadok, Matrix Reinhardt domains, preprint.Google Scholar
  2. 2.
    M. Brion, D. Luna, and Th. Vust, Espaces homogènes sphériques, Invent. Math. 84, 617–632 (1986).MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    G. Fels, Holomorphiehüllen der Reinhardtschen Gebiete sowie U n (C) × U n (C) invarianten Matrizengebiete, Diplomarbeit, Ruhr-Universität Bochum (1990).Google Scholar
  4. 4.
    P. Heinzner, Invariantentheorie in der komplexen Analysis, Habilitation, Ruhr-Universität Bochum (1990).Google Scholar
  5. 5.
    S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators and Spherical Functions, Academic Press, New York (1984).MATHGoogle Scholar
  6. 6.
    A. T. Huckleberry and T. Wurzbacher, Multiplicity-free complex manifolds, Math. Ann. 286, 261–280 (1990).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    M. Lassalle, Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact, Ann. Sci. École Norm. Sup. 11, 167–210 (1978).MATHMathSciNetGoogle Scholar
  8. 8.
    J. J. Loeb, Plurisousharmonicité et convexité sur les groupes réductifs complexes, Pub. IRMA—Lille, Vol. 2, No. VIII (1986).Google Scholar
  9. 9.
    A. G. Sergeev, On matrix Reinhardt domains, preprint.Google Scholar
  10. 10.
    D. M. Snow, Reductive group action on Stein spaces, Math. Ann. 259, 79–97 (1982).MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Takeuchi, Polynomial representations associated with symmetric bounded domains, Osaka J. Math. 10, 441–475 (1973).MATHMathSciNetGoogle Scholar
  12. 12.
    Th. Vust, Plongements d’espaces symétriques algébriques: une classification, Ann. Scuola Norm. Sup. Pisa 17, (1990).Google Scholar
  13. 13.
    X. Zhou, On matrix Reinhardt domains, Math. Ann. 287, (1990).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Alan T. Huckleberry
    • 1
  • G. Fels
    • 1
  1. 1.Institut für MathematikRuhr-Universität BochumBochum 1Germany

Personalised recommendations