Twistor Constructions for Vector Bundles

  • Paolo de Bartolomeis
Part of the The University Series in Mathematics book series (USMA)


In the last few years investigation of the so-called generalized twistor space Z(M), i.e., the parametrizing space for compatible almost complex structures on an even-dimensional Riemannian manifold M, has generated much interest. Generalized twistor theory is playing an increasing role in the study of conformai properties of Riemannian manifolds and in many other topics, such as the classification of harmonic maps into homogeneous spaces (cf., e.g., Refs. 2–4) and the Hermitian rigidity of ℙ n (ℂ) and other symmetric spaces [1]. In this chapter we extend twistor constructions to any oriented Riemannian E bundle of even rank.


Riemannian Manifold Gauge Group Vector Bundle Twistor Space Bundle Projection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Burns, preprint (1990).Google Scholar
  2. 2.
    D. Burns and P. de Bartolomeis, Application harmoniques stables dans P”, Ann. Sci. École Norm. Sup. 21, 159–187 (1988).MathSciNetzbMATHGoogle Scholar
  3. 3.
    F. E. Burstall, Twistor Methods for Harmonic Maps, Differential Geometry, Lecture Notes in Math., Vol. 1263, Springer-Verlag, Berlin (1987).Google Scholar
  4. 4.
    F. E. Burstall and J. H. Rawnsley, Twister Theory for Riemannian Symmetric Spaces with Applications to Harmonic Maps of Riemann Surfaces, Lecture Notes in Math., Vol. 1424, Springer-Verlag, Berlin (1990).Google Scholar
  5. 5.
    F. Campana, On twistor space of the class C., preprint, University of Bayreuth (1989).Google Scholar
  6. 6.
    P. de Bartolomeis, Some new global results in twistor geometry, in Proc. Int. Meeting on Geometry and Complex Variables, Bologna (1990).Google Scholar
  7. 7.
    P. de Bartolomeis and L. Migliorini, Scalar Curvature and Twistor Geometry, Aspect of Math., Proc. Int. Workshop, Wuppertal 1990, 33–39 (1991).Google Scholar
  8. 8.
    P. de Bartolomeis, L. Migliorini, and A. Nannicini, Espaces de twisteurs Kähleriens, C.R. Acad. Sci. Paris, 307, 259–261 (1988). Atti Acc. Naz. Lincei S. IX, Vol. II, fasc. 2 147–153 (1991).zbMATHGoogle Scholar
  9. 9.
    P. de Bartolomeis and A. Nannicini, Handbook of Twistor Geometry, to appear.Google Scholar
  10. 10.
    P. Gauduchon, Les structures holomorphes du fibré tangent vertical sur l’espace des twisteurs d’une varieté conforme autoduale, preprint (1989).Google Scholar
  11. 11.
    N. Hitchin, Linear fields equations on self-dual spaces, Proc. R. Soc. London A 370,173–191 (1980).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    N. Hitchin, Kählerian twistor spaces, Proc. London Math. Soc. 43, 133–150 (1981).MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    M. K. Murray, A Penrose transform for the twistor space of an even dimensional confor-mally flat Riemannian manifold, Ann. Global Anal. Geom.4, 71–88 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    J. H. Rawnsley, On the Atiyah-Hitchin-Drinfield-Manin vanishing theory for cohomology groups of instantons bundles, Math. Ann. 241, 43–56 (1979).MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    S. Salamon, Harmonic and Holomorphic Maps (Geometry Seminar “Luigi Bianchi” II, 1984), Lecture Notes in Math., Vol. 1164, Springer-Verlag, Berlin (1985).Google Scholar
  16. 16.
    M. Slupinski, Espaces de twisteurs Kähleriens en dimension 4k, k> 1, J. London Math. Soc. 33, 535–542 (1986).MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Paolo de Bartolomeis
    • 1
  1. 1.Dipartimento di Matematica Applicata G. Sansone, Facoltà di IngegneriaUniversità di FirenzeFirenzeItaly

Personalised recommendations