Tangent Bundles, Rational Curves, and the Geometry of Manifolds of Negative Kodaira Dimension

  • Thomas Peternell
Part of the The University Series in Mathematics book series (USMA)


The purposes of this chapter are some aspects of the “classification” theory of projective manifolds X with Kodaira dimension ∞, which is to say that
$${{H}^{0}}(X,\omega _{X}^{m}) = 0$$
for all m ∈ N, where \({{\omega }_{X}} = {{ \wedge }^{n}}\Omega _{X}^{1}\) is the canonical sheaf of X, n = dim X.


Vector Bundle Tangent Bundle Rational Curf Projective Manifold Fano Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Barth and E. Oeljeklaus, Über die Albanese Abbildung einer fast-homogenen Kähler Mannigfaltigkeit, Math. Ann. 211, 47–62 (1974).zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    W. Barth, C. Peters, and A. van de Ven, Compact Complex Surfaces, Ergebnisse Math., Bd. 3, Springer-Verlag (1984).zbMATHCrossRefGoogle Scholar
  3. 3.
    F. Campana and Th. Peternell, On the second exterior power of tangent bundles of three-folds. To appear in Comp. Math. (1992).Google Scholar
  4. 4.
    F. Campana and Th. Peternell, Manifolds whose tangent bundles are numerically effective, Math. Ann. 289, 169–187 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    K. Cho and E. Sato, Smooth projective varieties dominated by G/P, preprint (1991).Google Scholar
  6. 6.
    J. P. Demailly, Th. Peternell, and M. Schneider, Compact complex manifolds with numerically effective tangent bundles, preprint (1991).Google Scholar
  7. 7.
    P. Fischer, Mannigfaltigkeiten mit fast positivem Tangentialbündel, Thesis, Bayreuth (1990).zbMATHGoogle Scholar
  8. 8.
    T. Fujita, On Adjoint Bundles of Ample Vector Bundles, Lecture Notes in Math., 1507, 105–112(1992).CrossRefGoogle Scholar
  9. 9.
    P. Ionescu, Generalized adjunction and applications, Math. Proc. Cambridge Philos. Soc. 99, 452–472 (1986).CrossRefGoogle Scholar
  10. 10.
    V. A. Iskovskih, Fano 3-folds. I, Math. USSR 11, 485–526 (1977).zbMATHCrossRefGoogle Scholar
  11. 11.
    V. A. Iskovskih, Fano 3-folds. II, Math. USSR 12, 469–527 (1978).CrossRefGoogle Scholar
  12. 12.
    Y. Kawamata, Minimal models and the Kodaira dimension of algebraic fiber spaces, Crelle’s J. 363, 1–46 (1985).zbMATHMathSciNetGoogle Scholar
  13. 13.
    Y. Kawamata, Moderate Degenerations of Algebraic Surfaces, Lecture Notes in Math., 1507, 113–132(1992).CrossRefMathSciNetGoogle Scholar
  14. 14.
    Y. Kawamata, K. Matsuda, and K. Matsuki, Introduction to the minimal model problem, Adv. Stud. Pure Math. 10, 283–360 (1987).MathSciNetGoogle Scholar
  15. 15.
    S. Kobayashi and T. Ochiai, Characterisations of complex projective spaces and hyper-quadrics, J. Math. Kyoto Univ. 13, 31–47 (1973).zbMATHMathSciNetGoogle Scholar
  16. 16.
    R. Lazarsfeld, Some Applications of the Theory of Positive Vector Bundles, Lecture Notes in Math., 1092, 29–61. Springer-Verlag, New York (1984).CrossRefMathSciNetGoogle Scholar
  17. 17.
    Y. Miyaoka, Deformation of a Morphism along a Foliation, Proc. Symp. Pure Math., Vol. 46, Part 1, pp. 245–268, American Mathematical Society, Providence, RI (1987).Google Scholar
  18. 18.
    Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety. Adv. Stud. Pure Math. 10, 449–476 (1987).MathSciNetGoogle Scholar
  19. 19.
    Y. Miyaoka, On the Kodaira dimension of minimal threefolds, Math. Ann. 281, 325–332 (1988).zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Y. Miyaoka and S. Mori, A numerical criterion for uniruledness, Ann. of Math. Y2A, 65–69 (1986).CrossRefMathSciNetGoogle Scholar
  21. 21.
    N. Mok, The uniformization theorem for compact Kähler manifolds of non-negative holo-morphic bisectional curvature, J. Diff. Geom. 27, 179–214 (1988).zbMATHMathSciNetGoogle Scholar
  22. 22.
    S. Mori, Projective manifolds with ample tangent bundles, Ann. of Math. 110, 593–606 (1979).zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116, 133–176 (1982).zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    S. Mori, Classification of higher-dimensional varieties, Proc. Symp. Pure Math., Vol. 46, Part 1, pp. 269–332, American Mathematical Society, Providence, RI (1987).Google Scholar
  25. 25.
    S. Mori, Flip conjecture and the existence of minimal models for 3-folds, J. Am. Math. Soc. 1, 117–253 (1988).zbMATHGoogle Scholar
  26. 26.
    S. Mori and S. Mukai, On Fano 3-folds with b 2 2, Manuscripta Math. 36,147–162 (1981).zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    S. Mukai, On Fano manifolds of coindex 3, preprint (1990).Google Scholar
  28. 28.
    S. Mukai, Problems, in Birational Geometry of Algebraic Varieties — Open Problem (Y. Miyaoka, S. Mori, J. Kollár, eds.) preprint (1989).Google Scholar
  29. 29.
    K. H. Paranjapé and V. Srinivas, Selfmaps of homogeneous spaces, Invent. Math. 98, 425–444 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Th. Peternell, A vector bundle characterisation of P n , Math. Z. 205, 487–490 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Th. Peternell, Ample vector bundles on Fano manifolds, Int. J. Math. 2 311–322 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Th. Peternell, M. Szurek, and J. Wisniewski, Numerically effective vector bundles with small Chern classes, Lecture Notes in Math.,1507, 145–156 (1992).CrossRefMathSciNetGoogle Scholar
  33. 33.
    Th. Peternell, M. Szurek, and J. Wisniewski, Fano manifolds and vector bundles, preprint (1991); Math. Ann. 254, 151–165 (1992).CrossRefMathSciNetGoogle Scholar
  34. 34.
    V. V. Shokurov, The existence of a straight line on Fano 3-folds, Math. USSR. Isv. 15, 173–209 (1980).zbMATHCrossRefGoogle Scholar
  35. 35.
    Y. Siu and S. T. Yau, Compact Kähler manifolds with positive bisectional curvature, Invent. Math. 59, 189–204 (1980).zbMATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    J. Wisniewski, Length of extremal rays and generalized adjunction, Math. Z. 200, 409–427 (1989).zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    J. Wisniewski, On contractions of extremal rays on Fano manifolds, Crelle’s J. 47, 141–157 (1991).MathSciNetGoogle Scholar
  38. 38.
    J. Wisniewski, On a conjecture of Mukai, Manuscripta Math. 68, 135–141 (1990).zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    J. Wisniewski, On a conjecture of Mukai. II, preprint (1990).Google Scholar
  40. 40.
    J. Wisniewski, On Fano manifolds of large index, Manuscripta Math. 70, 145–152 (1991).zbMATHCrossRefMathSciNetGoogle Scholar
  41. 41.
    Y. Ye and Q. Zhang, On ample bundles whose adjoint bundles are not numerically effective, Duke Math. J. 60 (1990).Google Scholar
  42. 42.
    F. Zheng, On semi-positive threefolds, Thesis, Harvard (1989).Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Thomas Peternell
    • 1
  1. 1.Mathematisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations