Environmental Effects on Color Vision

  • S. M. Luria
Part of the Defense Research Series book series (DRSS, volume 3)


A wide variety of environmental variables may affect color vision. Among them are light itself, pressure, the composition of the atmosphere, medical and non-medical drugs, and such physical effects as acceleration.


Color Vision Colour Vision Deficiency Ambient Illumination Investigative Ophthalmology Visual Health 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramov, I., Hainline, L., Lemerise, E., Brown, A.K. (1985). Changes in visual functions of children exposed as infants to prolonged illumination. Journal of the American Optometric Association, 56, 614–619.Google Scholar
  2. Adams, A.J., Brown, B., Flom, M., Jampolsku, A., Jones, R.T. (1975). Influence of socially used drugs on vision and vision performance (Report No. 751). Washington, D.C.: U.S. Army Medical Research and Development Command:Google Scholar
  3. Adams, D.O., Beatrice, E.S., Bedell, R.D. (1972). Retina: Ultrastructural alterations produced by extremely low levels of coherent radiation. Science, 177, 58–59.CrossRefGoogle Scholar
  4. Aston, S.M., Bellchambers, H.E. (1969). Illumination, colour rendering and visual clarity. Lighting Research and Technology, 1, 259–261.CrossRefGoogle Scholar
  5. Behnke, A.R., Forbes, H.S., Motley, E.P. (1935). Circulatory and visual effects of 02 at 3 atmospheres pressure. American Journal of Physiology, 114, 436–442.Google Scholar
  6. Birch, J., Chisholm, I.A., Kinnear, P.R., Marre, M., Pinckers, A.J.L.G., Pokorny, J., Smith, V.C., Verriest, G. (1979). Acquired color vision defects. In J. Pokorny, V.C. Smith, G. Verriest, A.J.L.G. Pinckers (Eds.), Congenital and acquired color vision defects. New York: Grune Stratton.Google Scholar
  7. Bishop, H.P., Crook, M.N. (1961). Absolute identification of color for targets presented against white and colored backgrounds (WADD Tech. Report 60–611 ). Wright-Patterson AFB, OH: Aerospace Medical Research Laboratory.Google Scholar
  8. Blum, H.F., Fisher, M.B. (1942). Measurement of “visual” fields with the perimeter under conditions of physiologic stress (NMRL Report No. 1 ). Bethesda, MD: Naval Medical Research Laboratory.Google Scholar
  9. Bogetti, B., Molfino, A. (1965). Comportamento del senso cromatico durante iperossia in camera iperbarica. Annale di Ottalmologia e clinical Oculistica, 91, 1148–1158.Google Scholar
  10. Boles-Carenini, B., Cima, V. (1952). Studi col comportamento del senso cromatica (equazione de Rayleigh) all’anomaloscopio di Nagel sotto alterato apporto di Ossigeno all’apparato oculare. Rivista di Medicina Aeronautica, 15, 527–542.Google Scholar
  11. Boyce, P.R., Simons, R.H. (1977). Hue discrimination and light sources. Lighting Research and Technology, 9, 125–140.CrossRefGoogle Scholar
  12. Buck, G.B. ( 1949, September). Color preference studies with fluorescent lamps. Paper presented to the Illuminating Engineering Society, French Lick, IN.Google Scholar
  13. Chason, L.R., Berry, G.A. (1971). Effect of white noise on color vision. In Proceedings of the American Psychological Association 79th Annual Convention (pp. 585–586 ).Google Scholar
  14. Cobb, S.R., Shaw, F.G. (1980). The effect of industrial exposure to lead. In G. Verriest (Ed.) Colour vision deficiencies V. Bristol, England: Adam Hilger Ltd.Google Scholar
  15. Cornea, I., Dominte, V. (1981). Influenta excitatiei sonore asupra timpului de reactie in perceptia culorilor. Otorinolaringologia, 26, 111–114.Google Scholar
  16. Cruz-Coke, R. (1964–1965). Colour blindness and cirrhosis of the liver. Lancet, 1964, 2, 1064–1065; 1965, 1, 1131–1133.Google Scholar
  17. Cruz-Coke, R. (1965). Asociacion de defectos de vision de colores y cirrosis hepatica. Revista Medicina de Chile, 93, 127–129.Google Scholar
  18. Cruz-Coke, R. (1972). Correlation between color vision disturbance and appetite for alcohol. Clinical Genetics, 3, 404–410.CrossRefGoogle Scholar
  19. Davis, S.J., Fischer, G.J. (1978). Chick colour approach preferences are altered by cold stress; colour pecking and approach preferences are the same. Animal Behavior, 26, 259–264.CrossRefGoogle Scholar
  20. Dyer, F.N. (1986). Smoking and soldier performance (Report No. 86–13 ). Ft. Detrick, Maryland: U.S. Army Medical Research and Development Command.Google Scholar
  21. Dyer, F.N. (1988). Effects of low and high oxygen tensions and related respiratory conditions on visual performance: A literature review (Report No. 88–7 ). Ft. Rucker, AL: U.S. Army Aeromedical Research Laboratory.Google Scholar
  22. Emmerson, P.G. (1987). Chromatic adaptation in the underwater environment. Aviation, Space, and Environmental Medicine, 58, 1087–1092.Google Scholar
  23. Ernest, J.T., Krill, A.E. (1971). The effect of hypoxia on visual function. Psychophysical studies. Investigative Ophthalmology, 10, 323–328.Google Scholar
  24. Fieandt, K.V., Ahonen, L., Jaervinen, J., Lian, A. (1965). Color experiments with modern sources of illumination. Perceptual and Motor Skills, 20, 555–556.CrossRefGoogle Scholar
  25. Fowler, B., Granger, S. (1981). A theory of inert gas narcosis effects on performance. In A.J. Bachrach M.M. Matzen (Eds.), Underwater physiology VII. Bethesda, MD: Undersea Medical Society.Google Scholar
  26. Francois, J., Verriest, G. (1961). On acquired deficiency of colour vision, which special reference to its detection and classification by means of the tests of Farnsworth. Vision Research, 1, 201–219.CrossRefGoogle Scholar
  27. Frantsen, B.S., Iusfin, A.I. (1958). On alterations of color sensation under conditions of hypoxia. Fiziologicheskii Zhurnal USSR, 44, 519–525.Google Scholar
  28. Gauer, O.H., Zuidema, G.D. (1961). Gravitational stress in aerospace medicine. Boston: Little, Brown.Google Scholar
  29. Gillingham, K.K., McNaughton, G.B. (1977). Visual field contraction during G stress at 13°, 45°, and 65° seatback angles. Aviation, Space, and Environmental Medicine, 48, 91–96.Google Scholar
  30. Grutzner, P. (1969). Acquired vision defects secondary to retinal drug toxicity. Ophthalmologica, 158, 592–604.Google Scholar
  31. Ham, W.T., Jr., Mueller, J.H., Ruffolo, J.J. Jr., Guerry, D. III, Guerry, R.K. (1982). Action spectrum for retinal injury from near ultraviolet radiation in the aphakic monkey. American Journal of Ophthalmology, 93, 299–306.Google Scholar
  32. Ham, W.T., Jr., Mueller, H.W., Sliney, D.H. (1976). Retinal sensitivity to damage from short wavelength lights. Nature (London), 260, 153–155.CrossRefGoogle Scholar
  33. Ham, W.T., Jr., Ruffolo, J.J. Jr., Mueller, H.A., Guerry, D. III. (1980). The nature of retinal radiation damage: dependence on wavelength, power level and exposure time. Vision Research, 20, 1105–1111.CrossRefGoogle Scholar
  34. Hansen, E. (1980). The disturbance of colour vision after sunbathing. In G. Verriest (Ed.), Colour vision deficiencies V. Bristol, England: Adam Hilger Ltd.Google Scholar
  35. Helson, H. (1938). Fundamental problems in color vision. I. The principle governing changes in hue, saturation, and lightness of nonselective samples in chromatic illumination. Journal of Experimental Psychology, 23, 439–476.CrossRefGoogle Scholar
  36. Helson, H., Judd, D.B., Warren, M.H. (1952). Object-color changes from daylight to incandescent filament illumination. Illuminating Engineering, 47, 221–233.Google Scholar
  37. Hochberg, J.E., Triebel, W., Seaman, G. (1951). Color adaptation under conditions of homogeneous visual stimulation (Ganzfeld). Journal of Experimental Psychology, 41, 153–159.CrossRefGoogle Scholar
  38. Hohnsbein, J., Piekarski, C., Kampmann, B. (1983). Influence of high ambient temperature and humidity on visual sensitivity. Ergonomics, 26, 905–911.CrossRefGoogle Scholar
  39. Howard, P. (1962). The origin of blackout. In A. Mercier (Ed.), Visual problems in aviation medicine. New York: Macmillan.Google Scholar
  40. Ivey, L. (1984). Effect of vibration on the readability of color CRT displays. In Third Aerospace Behavioral Engineering Technology Conference Proceedings: “Automatic Workload Technology: Friend or Foe?”. Warrendale, PA: Society of Automotive Engineers.Google Scholar
  41. Kalmus, H. (1965). Diagnosis and genetics of defective colour vision. Oxford: Pergamon. Kelecom, J. (1963). Les dyschromatopsies acquises. Archives Ophthalmologie (Paris), 23, 15–25.Google Scholar
  42. Kelley, J.S., Burch, P.G., Bradley, M.E., Campbell, D.E. (1968). Visual function in divers at 15 to 26 atmospheres pressure. Military Medicine, 133, 827–829.Google Scholar
  43. Kinney, J.A.S., Cooper, J.C. (1967). Adaptation to a homochromatic visual world (Report No. 499 ). Groton, CT: Naval Submarine Medical Research Laboratory.Google Scholar
  44. Kinney, J.A.S., Luria, S.M., Markowitz, H. (1969). The effect of vibration on performance with electro-optical aids to night vision (Report No. 589 ). Groton, CT: Naval Submarine Medical Research Laboratory.Google Scholar
  45. Kinney, J.A.S., Luria, S.M., Strauss, M.S., McKay, C.L., Paulson, H.M. (1974). Shallow habitat air dive series (SHAD 1 and II): The effects on visual performance and physiology (Report No. 793 ). Groton, CT: Naval Submarine Medical Research Laboratory.Google Scholar
  46. Kitayev-Smyk, A. (1965). Man in a state of weightlessness (FTD Tech. Translation 65146 ). Wright-Patterson AFB, OH: Foreign Technology Division.Google Scholar
  47. Kobrick, J. (1970). Effects of hypoxia and acetazolamide on color sensitivity zones in the visual field. Journal of Applied Physiology, 28, 741–747.Google Scholar
  48. Kobrick, J.L., Zwick, H., Witt, C.E., Devine, J.A. (1984). Effects of extended hypoxia on night vision. Aviation, Space, and Environmental Medicine, 55, 191–195.Google Scholar
  49. Kravkov, S.V. (1936). The influence of sound upon the light and colour sensibility of the eye. Acta Ophthalmologica (Kobenhavn), 14, 348–360.CrossRefGoogle Scholar
  50. Kravkov, S.V. (1941). Color vision and the autonomic nervous system. Journal of the Optical Society of America, 31, 335–337.CrossRefGoogle Scholar
  51. Kremers, J.J.M., van Norren, D. (1988). Two classes of photochemical damage of the retina. Lasers and Light in Ophthalmology, 2, 41–52.Google Scholar
  52. Lagerwerff, J.M. (1963). Prolonged ozone inhalation and its effects on visual parameters. Aerospace Medicine, 34, 479–486.Google Scholar
  53. Lakowski, R., Morton, A. (1978). Acquired colour losses and oral contraceptives. In G. Verriest (Ed.), Colour vision deficiencies VI. Basel: Karger.Google Scholar
  54. Lanum, J. (1978). The damaging effects of light on the retina. Empirical findings, theoretical and practical implications. Survey of Ophthalmology, 22, 221–249.CrossRefGoogle Scholar
  55. Laroche, J., Laroche, C. (1970). Action de quelques antibiotiques sur la vision des couleurs. Annales Pharmaceutiques Francaises, 28, 333–341.Google Scholar
  56. Laroche J., Laroche, C. (1972). Modifications de la vision des couleurs apportees par l’usage, a dose therapeutique normale, de quelques medicaments. Annales Pharmaceutiques Francaises, 30, 433–444.Google Scholar
  57. Lerman, S. (1980). Radiant energy and the eye. New York: MacMillan.Google Scholar
  58. LaVail, M.M. (1980). Interaction of environmental light and eye pigmentation with inherited retinal degenerations. Vision Research, 20, 1173–1177.CrossRefGoogle Scholar
  59. Letourneau, J.E., Belanger, J.L. (1981). Effect of auditory stimulation on subjects’ chromatic visual fields. Perceptual and Motor Skills, 52, 67–74.CrossRefGoogle Scholar
  60. Letourneau, J.E., Zeidel, N.S. (1971). The effect of sound on the perception of color. American Journal of Optometry and Archives of Optometry, 48, 133–137.CrossRefGoogle Scholar
  61. Levy, N.S., Toskes, P.P. (1975). Fundus albipunctatus and vitamin A deficiency. American Journal of Ophthalmology, 78, 926–929.Google Scholar
  62. Livingston, P.C. (1938). The problem of blackout in aviation (amourosis fugax). British Journal of Surgery, 8, 24–33.Google Scholar
  63. London, I.D. (1954). Research on sensory interaction in the Soviet Union. Psychological Bulletin, 51, 531–568.CrossRefGoogle Scholar
  64. Luria, S.M. (1986). Effects of atmospheric contaminants under hyperbaric conditions with particular reference to vision (Memo. Report 86–5 ). Groton, CT: Naval Submarine Medical Research Laboratory.Google Scholar
  65. Luria, S.M., Kinney, J.A.S., McKay, C.L., Paulson, H.M., Ryan, A.P. (1979). Effects of aspirin and dimenhydrate (Dramamine) on visual processes. British Journal of Clinical Pharmacology, 7, 585–593.CrossRefGoogle Scholar
  66. Luna, S.M., Kobus, D.A. (1984). The relative effectiveness of red and white light for subsequent dark-adaptation (Report No. 1036 ). Groton, CT: Naval Submarine Medical Research Laboratory.Google Scholar
  67. Luria, S.M., Kobus. D.A. (1985). Red light, white light. Proceedings of the U.S. Naval Institute, 111, 123–126.Google Scholar
  68. Luria, S.M., Paulson, H.M., Kinney, J.A.S., McKay, C.L., Strauss, M.S., Ryan, A. (1975). The effect of common therapeutic drugs on vision (Report No. 808 ). Groton, CT: Naval Submarine Medical Research Laboratory.Google Scholar
  69. Luria, S.M., Paulson, H.M., Ryan, A.P., Schlichting, C.L. (1979). Effects of pseudoephedrine and triprolidine on visual performance. Aviation, Space, and Environmental Medicine, 50, 1158–1160.Google Scholar
  70. Lyle, W.M. (1974). Drugs and conditions which may affect color vision. Journal of the American Optometric Association, 45, 47–60.Google Scholar
  71. Macbeth, N., Nickerson, D. (1949). Spectral characteristics of light sources. Journal of the Society of Motion Picture and Television Engineers, 52, 157–183.Google Scholar
  72. Margolis, G., Brown, I.W., Jr. (1966). Hyperbaric oxygenation: The eye as a limiting factor. Science, 151, 466–468.CrossRefGoogle Scholar
  73. Marshall, J., Hamilton, A.M., Bird, A.C. (1975). Histopathology of ruby and argon laser lesions in monkey and human retina. British Journal of Ophthalmology, 59, 610–629.CrossRefGoogle Scholar
  74. Massof, R.W., Sykes, S.M., Rapp, L.M., Robison, W.G., Jr., Zwick, H., Hochheimer, B. (1986). Optical radiation damage to the ocular photoreceptors. In M. Waxier V.M. Hitchins (Eds.), Optical radiation and visual health. Boca Raton, FL: CRC Press.Google Scholar
  75. McCollough, C. (1965a). Color adaptation of edge-detectors in the human visual system. Science, 149, 1115–1116.CrossRefGoogle Scholar
  76. McCollough, C. (1965b). The conditioning of color-perception. American Journal of Psychology, 78, 362–378.CrossRefGoogle Scholar
  77. McFarland, R.A. (1946). Human factors in air transport design. New York: McGraw-Hill.Google Scholar
  78. Merrian, G.R., Jr., Focht, E.F. (1957). A clinical study of radiation cataracts and the relationship to dose. American Journal of Roentgenology, 77, 759–785.Google Scholar
  79. Messner, K.H., Maisels, M.J., Leure-duPree, A.E. (1978). Investigative Ophthalmology and Visual Science, 17, 178–182.Google Scholar
  80. Messner, K.H., McDonagh, A.F. (1978). Phototherapy for neonatal hyperbilirubinemia: Efficacy, mechanisms, and toxicity. Advances in Pediatrics, 27, 341–389.Google Scholar
  81. Modugno, G.C. (1982). Variazioni del senso cromatico in corso di prolungata permanenza a m. 4.550 s.l.m. Rivista di Medicina Aeronautica e Spaziale, 47, 247–253.Google Scholar
  82. Neri, D.F., Luria, S.M., Kobus, D.A. (1986). The detection of various color combinations under different chromatic ambient illuminations. Aviation, Space, and Environmental Medicine, 57, 550–560.Google Scholar
  83. Noell, W.K. (1961). Effects of high and low oxygen tension on the visual system. In K.E. Schaefer (Ed.), Environmental Effects on Consciousness. New York: Macmillan.Google Scholar
  84. Owsley, C., Kline, D.W., Werner, J.S., Greenstein, V., Marshall, J. (1986). Optical radiation effects on aging and visual perception. In M. Waxler V.M. Hitchins (Eds.), Optical radiation and visual health. Boca Raton, FL: CRC Press.Google Scholar
  85. Palmquist, B.B., Philipson, B., Barr, P.O. (1984). Nuclear cataract and myopia during hyperbaric oxygen therapy. British Journal of Ophthalmology, 68, 113–117.CrossRefGoogle Scholar
  86. Paulson, H.M., Ryan, A.P. (1981). The FM 100-hue test for assessing the effect of oxygen on color vision (Report No. 966 ). Groton CT: Naval Submarine Medical Research Laboratory.Google Scholar
  87. Pitts, D.G., Cameron, L.L., Jose, J.G., Lerman, S., Moss, E., Varma, S.D., Zigler, S., Zigman, S., Zuclich, J. (1986). Optical radiation and cataracts. In M. Waxier V.M. Hitchins (Eds.), Optical radiation and visual health. Boca Raton, FL: CRC Press.Google Scholar
  88. Pollack, J.D. (1968). Reaction time to different wavelengths at various luminances. Perception and Psychophysics, 3, 17–24.CrossRefGoogle Scholar
  89. Rapp, L.M., Williams, T.P. (1980). The role of ocular pigmentation in protecting against retinal light damage. Vision Research, 20, 1127–1131.CrossRefGoogle Scholar
  90. Reddy, V., Vijayalaxami (1977). Colour vision in vitamin A deficiency. British Medical Journal, 1, 81.Google Scholar
  91. Roth, E.M. (1968). Ionizing radiation. In Compendium of Human Responses to the Aerospace Environment. Volume 1, Sections 1–6. Albuquerque, NM: Lovelace Foundation for Medical Education and Research.Google Scholar
  92. Ruddock, K.H. (1965). The effect of age upon colour vision-II. Changes with age in light transmission of the ocular media. Vision Research, 5, 47–58.CrossRefGoogle Scholar
  93. Sample, P.A., Esterson, F.D., Weinreb, R.N., Boynton, R.M. (1988). The aging lens: In vivo assessment of light absorption in 84 human eyes. Investigative Ophthalmology and Visual Science, 29, 1306–1311.Google Scholar
  94. Schmidt, I., Bingel, A.G.A. (1953). Effect of oxygen deficiency and various other factors on color saturation thresholds (Project No. 21–31–002). Randolph Field, TX: U.S. Air Force School of Aviation Medicine.Google Scholar
  95. Shute, D., Oshinskie, L. (1986). Acquired color vision defects and self monitoring of blood sugar in diabetics. Journal of the American Optometric Association, 57, 824–831.Google Scholar
  96. Silverman, H.I. (1972). The adverse effects of commonly used systemic drugs on the human eye-Part II. American Journal of Optometry and Archives of the American Academy of Optometry, 49, 335–362.CrossRefGoogle Scholar
  97. Silverman, H.I., Walsh, R.A. (1971). The adverse effects of commonly used systemic drugs on the human eye. American Journal of Optometry and Archives of the American Academy of Optometry, 48, 51–61.CrossRefGoogle Scholar
  98. Sliney, D.H. (1970). Evaluating health hazards from military lasers. Journal of the American Medical Association, 214, 1047–1054.CrossRefGoogle Scholar
  99. Sliney, D.H., Freasier, B.E. (1973). Evaluation of optical radiation hazards Applied Optics, 12, 1–24.CrossRefGoogle Scholar
  100. Sliney, D.H., Yacovessi, R. (1975). Control of health hazards from airborne lasers. Aviation, Space, and Environmental Medicine, 46, 691–696.Google Scholar
  101. Smith, V.C., Ernest, J.T., Pokorny, J. (1976). Effect of hypoxia on FM 100-Hue test performance. Modern Problems of Ophthalmology, 17, 248–256.Google Scholar
  102. Sperling, H.G. (1980). Intense light hazards in ophthalmic diagnosis and treatment. Vision Research, 20, 1033–1203.CrossRefGoogle Scholar
  103. Sperling, H.G., Johnson, C., Harwerth, R.S. (1980). Differential spectral photic damage to primate cones. Vision Research, 20, 1117–1125.CrossRefGoogle Scholar
  104. Sukhov, A.E., Gorgo, Y.P. (1986). Izmenenie tsvetovoi chuvstvitelnocti i operatorob pri modelirobanii razlichnikh form emotsionalnovo stressa. Zhurnal Visshei Nervnoi Deyatelnocti, 36, 858–863.Google Scholar
  105. Sundstrom, E. (1987). Work environments: Offices and factories. In D. Stokes I. Altman (Eds.), Handbook of environmental psychology. New York: Wiley.Google Scholar
  106. T’so, M.O.M., Wallow, H.L., Powell, J.O. (1973). Differential susceptibility of rod and cone cells to argon laser. Archives of Ophthalmology, 89, 228–234.CrossRefGoogle Scholar
  107. Tyte, R., Wharf, J., Ellis, B. (1975). Visual response times in high ambient illumination. In SID Digest (pp. 98–99 ). New York, NY: Palisades Institute for Research Services, Inc.Google Scholar
  108. Vollmer, E.P., King, B.G., Fisher, M.B., Birren, J.E. (1946). The effects of carbon monoxide on three types of performance at simulated altitudes of 10,000 and 15,000 feet. Journal of Experimental Psychology, 36, 244–251.CrossRefGoogle Scholar
  109. Waxier, M., Hitchins, V.M. (1986). Optical radiation and visual health. Boca Raton, FL: CRC Press.Google Scholar
  110. Weitzman, D.O., Kinney, J.A.S., Luria, S.M. (1969). Effect on vision of repeated exposure to carbon dioxide (Report No. 566 ). Groton, CT: Naval Submarine Medical Research Laboratory.Google Scholar
  111. White, W. (1960). Variations in absolute visual thresholds during acceleration stress (WADD Tech. Report 60–34 ). Wright-Patterson AFB, OH: Wright Air Development Division.Google Scholar
  112. Williams, T.P., Baker, B.N. (1980). The effects of constant light on visual processes. New York: Plenum.CrossRefGoogle Scholar
  113. Wulfeck, J.W., Weisz, A., Raben, M.W. (1958). Vision in military aviation (WADC Tech. Report 58–399 ). Wright-Patterson Air Force Base, OH: Wright Air Development Center.Google Scholar
  114. Yakovlev, P.A. (1938). The influence of acoustic stimuli upon the limits of visual fields for different colors. Journal of the Optical Society of America, 28, 286–289.CrossRefGoogle Scholar
  115. Zigman, S., Datiles, M., Torczynski, E. (1979). Sunlight and human cataracts. Investigative Ophthalmology, 18, 462–467.Google Scholar
  116. Zwick, H., Beatrice, E.S. (1978). Long-term changes in spectral sensitivity after low-level laser (524 nm) exposure. Modern Problems of Ophthalmology, 19, 319–325.Google Scholar
  117. Zwick, H., Jenkins, D.L. (1980). Coherency effects on retinal neural processes (ERG) of pseudemys. In G. Verriest (Ed.), Colour Vision Deficiencies. Bristol, England: Hilger.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • S. M. Luria
    • 1
  1. 1.Naval Submarine Medical Research LaboratoryGrotonUSA

Personalised recommendations