Ionization Dynamics and Exchange Effects in Pure Three-Body Coulomb Scattering

  • J. Berakdar
  • J. S. Briggs
Part of the Physics of Atoms and Molecules book series (PAMO)


The measurement of two electrons in coincidence following ionization by electron impact has been performed in a variety of collision geometries [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. The different cases yield information on different dynamical aspects of the ionization process. Theoretically, upon analysis of ionization mechanisms certain patterns are deduced for the distributions of the vector momenta of reaction fragments. The major obstacle in a theoretical description of such scattering reactions is the inherent non-separability of many-body Coulomb interacting systems. Thus, these systems have to be represented by approximate Hamiltonians and different approximations may well lead to different interpretations of the scattering dynamics. Here we investigate pure three-body Coulombic systems above the complete break-up threshold. A cluster model is adopted in which the three-body system is approximated by three, spatially decoupled, two-body (Kepler) subsystems. This results in the well known 3C-approximation [13, 14]. Coupling between these, in the configuration space, non-interacting two-body (Rutherford) scattering systems can be introduced via position-dependent Sommerfeld parameters [15]. Analyses of the results yielded by these techniques show that dominant structures in the (theoretical) spectra of the outgoing particles can be assigned to the following underlying mechanisms:
  • Single and double-binary collisions

  • Coulomb density-of-state factors

  • interplay between collisional ionization mechanisms and exchange effects

  • Wannier ionization mode

  • Quantum interference between contributing scattering amplitudes and three-body effects.


Incident Energy Scattering Amplitude Incident Direction Ionization Dynamics Outgoing Electron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Ehrhardt, M. Schulz, T. Tekaat and K. Willmann, Phys. Rev. Lett. 22: 89 (1969).ADSCrossRefGoogle Scholar
  2. [2]
    U. Amaldi, A. Egioli, R. Marconero and G. Pizella, RevSci.Instrum. 40: 1001 (1969).ADSCrossRefGoogle Scholar
  3. [3]
    B. Lohmann, I.E. McCarthy, A.T. Stelbovic and E. Weigold, Phys. Rev. A 30 758 (1984).Google Scholar
  4. [4]
    H. Ehrhardt, G. Knoth, P. Schlemmer and K. Jung, Phys. Lett. 11A: 92 (1985).Google Scholar
  5. [5]
    A. Pochat, R.J. Tweed, J. Peresse, C.J. Joachain, B. Piraux and F.W.Jr. Byron, J. Phys. B: At Mol. Phys. 16: L775 (1983).ADSCrossRefGoogle Scholar
  6. [6]
    M. Brauner, J.S. Briggs, H. Klar, J.T. Broad, T. Rösel, K. Jung and H. Ehrhardt, J. Phys. B: At. Mol. Phys. 24: 657 (1991).ADSCrossRefGoogle Scholar
  7. [7]
    L. Frost, P. Freienstein and W. Wagner, J. Phys. B: At. Mol. Phys. 23: L715 (1990).ADSCrossRefGoogle Scholar
  8. [8]
    I.E. McCarthy and E. Weigold, Rep. Prog. Phys. 54: 781 (1991).ADSCrossRefGoogle Scholar
  9. [9]
    A.J. Murray and F.H. Read, Phys. Rev. Lett. 69: 2912 (1992).ADSCrossRefGoogle Scholar
  10. [10]
    A.J. Murray and F.H. Read Phys. Rev. A 47: 3724 (1993).Google Scholar
  11. [11]
    A.J. Murray and F.H. Read J. Phys. B: At. Mol. Phys. 26: L359 (1993).Google Scholar
  12. [12]
    J. Berakdar, J. Röder, J.S. Briggs and H. Ehrhardt, J. Phys. B: At. Mol. Phys. in press (1996).Google Scholar
  13. [13]
    G. Garibotti and J.E. Miraglia Phys.Rev.A 21: 572 (1980)Google Scholar
  14. [14] M. Brauner, J.S. Briggs and H. Klar, J Phys. B 22: 2265 (1989).
    J. Berakdar, Phys. Rev. A. 53: 2314 (1996).Google Scholar
  15. [16]
    J. Berakdar and J.S. Briggs, Phys. Rev. Lett. 72: 3799 (1994)ADSCrossRefGoogle Scholar
  16. J. Berakdar and J.S. Briggs, J. Phys. B 27: 4271 (1994)ADSCrossRefGoogle Scholar
  17. J. Berakdar and J.S. Briggs, ibid 29: 2289 (1996).Google Scholar
  18. [17]
    J. Berakdar Phys. Rev. A (1997) in press.Google Scholar
  19. [18]
    J. Berakdar and H. Klar, J. Phys. B 26: 4219 (1993).ADSCrossRefGoogle Scholar
  20. [19]
    C.J. Joachain, Comments At. Mol. Phys. 17: 261 (1986).Google Scholar
  21. [20]
    J. Röder, private communication (1996).Google Scholar
  22. [21]
    G. Wannier, Phys. Rev. 90: 817 (1953).ADSMATHCrossRefGoogle Scholar
  23. [22]
    T. Rösel, J. Röder, L. Frost, K. Jung, H. Ehrhardt, S. Jones and D.H. Madison Phys. Rev. A 46: 2539 (1992).Google Scholar
  24. [23]
    F.W. Byron Jr., C.J. Joachain, Phys. Rep. 179: 211 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • J. Berakdar
    • 1
  • J. S. Briggs
    • 2
  1. 1.Atomic and Molecular Physics Laboratories, Research School of Physical Sciences and Engineering, Institute of Advanced StudiesAustralian National UniversityCanberraAustralia
  2. 2.Fakultät für PhysikAlbert-Ludwig-UniversitätFreiburgGermany

Personalised recommendations