Advertisement

Bethe-Ridge Effects in (e,2e) on H (Using 6Dime)

  • S. P. Lucey
  • J. Rasch
  • Colm T. Whelan
  • R. J. Allan
  • H. R. J. Walters
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

The study of (e,2e) processes on neutral targets such as Hydrogen and Helium has provided a measure of knowledge as to the importance of competing physical effects that govern the shape of experimental Triple Differential Cross Sections 2,3,4. All of these studies emphasise that the calculated Triple Differential Cross Section is sensitive to the the form of both the initial and final states that one uses to approximate the problem. It is therefore reasonable, before embarking on a study of (e,2e) on H also to anticipate a great sensitivity to the form of approximation that one uses, and to expect competing physical processes to have different relative effects to (e,2e) on neutral targets. It is the purpose of this paper to enlarge upon the theory presented in 5 and to demonstrate the applicability of the 6-Dimensional Integral Method 6, 7 in the study of (e,2e) on H .

Keywords

Full Calculation Incoming Electron Initial Channel Neutral Target Triple Differential Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. A. Bethe and E. E. Salpeter. “Quantum Mechanics of One-and Two-Electron Atoms,” Plenum Publishing Corporation, New York (1977).Google Scholar
  2. 2.
    Co1m T. Whelan, R. J. Allan and H. R. J. Walters. “PCI, Polarisation and Exchange Effects in (e,2e) Collisions,” Journal de Physique. 3C6: 39 (1993).Google Scholar
  3. 3.
    Colm T. Whelan, H. R. J. Walters and X. Zhang. “(e,2e) and Related Processes,” Kluwer academic publishers, Netherlands (1993).Google Scholar
  4. 4.
    J. Rasch. (e,2e) Processes with Neutral Atom Targets, Ph. D. Thesis, Cambridge University, (1996).Google Scholar
  5. 5.
    S. P. Lucey, Co1m T. Whelan, R. J. Allan and H. R. J. Walters. (e,2e) on Hydrogen Minus, H—, J. Phys. B. 29: L489 (1996).Google Scholar
  6. 6.
    J. Rasch, S. P. Lucey and Colm T. Whelan. 6-Dimensional Integral Method, Computer Physics Communications. Accepted for publication (1996).Google Scholar
  7. 7.
    S. P. Lucey, J. Rasch, Colm T. Whelan and H. R. J. Walters Aspects of (e,2e): 6-Dimensional Integral Method, Proceedings of Denton conference (1996).Google Scholar
  8. 8.
    C. J. Joachain “Quantum Collision Theory,” North Holland, Amsterdam (1983).Google Scholar
  9. 9.
    B. H. Bransden and C. J. Joachain “Physics of Atoms and Molecules,” Longman, London and New York (1983).Google Scholar
  10. 10.
    D. P. Dewangan and H. R. J. Walters. Electron Loss from H(2s), H(Is), He(ls), He(2s), Li(2s), H— and He— Projectiles Passing through Inert Gases-the Free Collision Model, J. Phys. B. 11:3983 (1978).Google Scholar
  11. 11.
    R. J. Tweed. Correlated Wavefunctions for Helium-like Atomic Systems, J. Phis. B. 5: 810 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    M.Brauner, J. S. Briggs and H. Klar. Triply differential cross sections for ionisation of Hydrogen atoms by electrons and positrons J. Phys. B. 22: 2265 (1989).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • S. P. Lucey
    • 1
  • J. Rasch
    • 1
  • Colm T. Whelan
    • 1
  • R. J. Allan
    • 1
    • 2
  • H. R. J. Walters
    • 1
    • 3
  1. 1.D. A. M. T. P.CambridgeEngland
  2. 2.Daresbury LaboratoryC. C. L. R. CWarringtonEngland
  3. 3.D. A. M. T. P.Queen’s University of BelfastNorthern Ireland

Personalised recommendations