Advertisement

Second Born Calculations of(e-2e) Cross Sections at Low Energy Using a Pseudostate Set

  • F. Rouet
  • G. Nguyen Vien
  • R. J. Tweed
  • O. Robaux
  • J. Langlois
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

Here we present a novel method for the calculation of cross sections for electron impact ionization of atomic targets. Calculations are carried out in coplanar geometries for incident energies lower than 54.4eV and a hydrogen target. Many theories have been proposed over the years to solve the atomic ionization problem, most of them employing variations of the Born series. Among the first Distorted-Wave Born Approximation (DWBA) calculations for ionization of atomic hydrogen are those of Madison et al.1 and Bransden et al.2 where post-collision interaction (PCI) between the scattered and ejected electrons was included only via shielding of the nucleus by the slower one. This approximation is valid when the energies of the outgoing electrons are very different. In fact, the major problem for the final state is how to take account of the Coulomb repulsion between a pair of final state free electrons. An attempt to solve this problem was made by Brauner, Briggs and Klar3 who proposed an approximation for the collision wavefunction appropriate to the final state of the system. This wavefunction satisfies the Schrödinger equation exactly in the asymptotic region but its use involves rather complicated and lengthy calculations. Some simplified treatments have been proposed. Dal Cappello and Joulakian4 retained only the angular dependent normalisation factor of the BBK ansatz. This approach is equivalent to the treatment of Whelan et al.5 where the dominant angular behaviour of the TDCS at low energies due to electron-electron interaction in final state is taken into account by the the Gamow factor N ee .

Keywords

Distorted Wave Electron Impact Excitation Energy Sharing Triple Differential Cross Section Asymmetric Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.H. Madison, R.V. Calhoum and W.N. Shelton, Triple-differential cross sections for electron-impact ionization of helium, Phys. Rev. A 16: 552 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    B.H. Bransden, J.J. Smith and K.H. Winters, Distorted-wave approximation for the triple-differential cross section for ionization of helium by electron impact, J. Phys. B: At. Mol. Phys. 11: 3095 (1978).ADSCrossRefGoogle Scholar
  3. 3.
    M. Brauner, J.S. Briggs and H. Klar, Triply-differential cross sections for ionization of hydrogen atoms by electrons and positrons, J. Phys. B: At. Mol. Phys. 22: 2265 (1989).ADSCrossRefGoogle Scholar
  4. 4.
    C. Dal Cappello and B. Joulakian, (e-2e) and Related Processes, Kluwer, Dortrecht (1993).Google Scholar
  5. 5.
    C.T. Whelan, R.J. Allan, J. Rasch, H.R.J. Walters, X. Zhang, J. Röder, K. Jung and H. Ehrhardt, Coulomb three-body effects in (e,2e) collisions: the ionization of H in coplanar symmetric geometry, Phys. Rev. A 50: 4394 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    E.P. Curran and H.R.J. Walters, Triple differential cross sections for electron impact ionization of atomic hydrogen-a coupled pseudostate calculation, J. Phys. B: At. Mol. Phys. 20: 337 (1987).ADSCrossRefGoogle Scholar
  7. 7.
    I. Bray and D.V. Fursa, Calculation of ionization within the close-coupling formalism, Phys. Rev. A 54: 2991 (1996).ADSCrossRefGoogle Scholar
  8. 8.
    F.W. Byron, C.J. Joachain and B. Piraux, Triple differential cross sections for ionization of atomic hydrogen by fast electrons: a second Born treatment, J. Phys. B: At. Mol. Phys. 13: L673 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    F.W. Byron, C.J. Joachain and B. Piraux, On the theory of (e, 2e) reactions in atomic hydrogen and helium, Phys. Lett. 106A: 299 (1984).CrossRefGoogle Scholar
  10. 10.
    F.W. Byron, C.J. Joachain and B. Piraux, Eikonal-Born theory of (e,2e) reaction in atomic hydrogen, J. Phys. B: At. Mol. Phys. 18: 3203 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    B. Lohmann, I.E. McCarthy, A.T. Stelbovics and E. Weigold, Electron impact ionization of atomic hydrogen: comparison of asymmetric (e,2e) measurments with theories, Phys. Rev. A 30: 758 (1984).Google Scholar
  12. 12.
    H. Ehrhardt, G. Knoth, P. Schlemmer and K. Jung 1985, Absolute H(e, 2e)p cross section measurements: comparison with first and second order theory, Phys. Lett. 110A: 92 (1985).Google Scholar
  13. 13.
    H. Ehrhardt, M. Fischer, K. Jung, F.W. Byron, C.J. Joachain and B. Piraux, Triple differential cross sections for the ionization of helium by fast electrons, Phys. Rev. Lett. 48: 1807 (1982).ADSCrossRefGoogle Scholar
  14. 14.
    F. Rouet, R.J. Tweed and J. Langlois, The effect of target atom polarization and wavefunction distortion in (e-2e) ionization of hydrogen, J. Phys. B: At. Mol. Phys. 29: 1767 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    M.R.C. McDowell, L.A. Morgan and V.P. Myerscough, Electron impact excitation of H and He I. is ns transitions, J. Phys. B: At. Mol. Phys. 6: 1435 (1973).ADSCrossRefGoogle Scholar
  16. 16.
    R.J. Tweed and J. Langlois, Pseudostate bases including an L 2 description of the continuum for use in e--He collision calculations, J. Phys. B: At. Mol. Phys. 24: 1779 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    J. Callaway, The variational method in atomic scattering, Phys. Rep. 45: 89 (1978).ADSCrossRefGoogle Scholar
  18. 18.
    J. Callaway and K. Unnikrishnan, Electron impact excitation of the n=2 and n=3 states of hydrogen atom at intermediate (14–100 eV) energies, Phys. Rev. A 48: 4292 (1993).Google Scholar
  19. 19.
    M. Brauner, J.S. Briggs, H. Klar, J.T. Broad, T. Rösel, K. Jung and H. Ehrhardt, Triply differential cross sections for ionization of hydrogen atoms by electrons: the intermediate and threshold energy regions, J. Phys. B: At. Mol. Phys. 24: 657 (1991).ADSCrossRefGoogle Scholar
  20. 20.
    R.J. Tweed, C. Tannous and P. Marchalant, Modelling of three-body effects in a double continuum, Journal de Physique 107: 3 (1993).Google Scholar
  21. 21.
    M. Nicolas, R.J. Tweed and O. Robaux, Semiclassical approach to PCI in (e-2e) ionization of H: coplanar geometry energy sharing, J. Phys. B: At. Mol. Phys. 29: 791 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • F. Rouet
    • 1
  • G. Nguyen Vien
    • 1
  • R. J. Tweed
    • 1
  • O. Robaux
    • 1
  • J. Langlois
    • 1
  1. 1.Laboratoire des Collisions Electroniques et AtomiquesFaculté des Sciences et des TechniquesBrest cedexFrance

Personalised recommendations