Skip to main content

Nonlinear Coherent Optical Effects in Semiconductors

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 330))

Abstract

The resonant illumination by coherent optical radiation of an electronic excitation creates a quantum mechanical coherent superposition of the initial and final states of the transition. The nonlinear optical properties of this state can be used to provide a sensitive measurement of many fundamental parameters of the material including transport, elastic and inelastic scattering, energy level splittings between nearly degenerate states, energy relaxation, as well as associated information such as Landé g-factors, the degree of state mixing and symmetry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Haug, S. Schmitt-Rink, J. Opt. Soc. Am. B 2, 1135 (1985).

    Article  ADS  Google Scholar 

  2. D.S. Chemla, S. Schmitt-Rink, and D.A.B. Miller, in Optical Nonlinearities and Instabilities in Semiconductors, H. Haug, Editor. (1988, Academic Press, San Diego) p. 83.

    Chapter  Google Scholar 

  3. H. Wang, K. Ferrio, D.G. Steel, Y. Hu, R. Binder, and S. Koch, submitted for publication (1993).

    Google Scholar 

  4. F.H. Pollak and M. Cardona, Phys. Rev. 172, 816 (1968).

    Article  ADS  Google Scholar 

  5. M. Cardona, Personal Communication. 1992.

    Google Scholar 

  6. M. Sargent, M.O. Scully, and W.E. Lamb, Laser Physics (Addison-Wesley, Reading, Mass., 1974)

    Google Scholar 

  7. G. Lampel, A.N. Titkov, and V.I. Safarov, in Fourteenth International Conference on the Physics of Semiconductors, (IOP Conference Proceedings, 1978.).

    Google Scholar 

  8. G.W. Fehrenbach, W. Schafer, J. Treusch, R.G. Ulbrich, Phys. Rev. Let. 49, 1281 (1982).

    Article  ADS  Google Scholar 

  9. L. Schultheis, J. Kuhl, A. Honold, C.W. Tu, Phys. Rev. Let. 57, 1635 (1986).

    Article  ADS  Google Scholar 

  10. H. Wang, K. Ferrio, D.G. Steel, P. Berman, and S.W. Koch, submitted for publication (1993).

    Google Scholar 

  11. D.-S. Kim, J. Shah, T.C. Damen, W. Schafer, F. Jahnke, S. Schmitt-Rink, and K. Kohler, Phys. Rev. Lett. 69, 2725 (1992).

    Article  ADS  Google Scholar 

  12. C. Weisbuch, R. Dingle, A.C. Gossard, and W. Wiegmann, Solid State Comm. 38, 709 (1981).

    Article  ADS  Google Scholar 

  13. R.C. Miller, C.W. Tu, S.K. Sputz, and R.F. Kopf, Appl. Phys. Lett. 49, 1245 (1986).

    Article  ADS  Google Scholar 

  14. C.W. Tu, R.C. Miller, B.A. Wilson, P.M. Petroff, T.D. Harris, R.F. Kopf, S.K. Sputz, and M.G. Lamon, J. Cryst. Growth 81, 159 (1987).

    Article  ADS  Google Scholar 

  15. A. Ourmazd, D.W. Taylor, J. Cunningham, and C.W. Tu, PRL 62, 933 (1989).

    Article  ADS  Google Scholar 

  16. B. Deveaud, B. Guenais, A. Poudoulec, and A. Regreny, Phys. Rev. Lett. 65, 2317 (1990).

    Article  ADS  Google Scholar 

  17. A. Ourmazd and J. Cunningham, Phys. Rev. Lett 65, 2318 (1990).

    Article  ADS  Google Scholar 

  18. C.A. Warwick, W.Y. Jan, A. Ourmazd, and T.D. Harris, Appl. Phys. Lett. 56, 2666 (1990).

    Article  ADS  Google Scholar 

  19. D. Gammon, B.V. Shanabrook, and D.S. Katzer, Phys. Rev. Lett. 67, 1547 (1991).

    Article  ADS  Google Scholar 

  20. T. Tanaka and H. Sakaki, J. Cryst. Growth 81, 153 (1987).

    Article  ADS  Google Scholar 

  21. T. Takagahara, Phys. Rev. B 31, 6552 (1985).

    Article  ADS  Google Scholar 

  22. T. Takagahara, Jr. Lumin. 44, 347 (1989).

    Article  Google Scholar 

  23. D.G. Steel and J.T. Remillard, Phys. Rev. A 36, 4330 (1987).

    Article  ADS  Google Scholar 

  24. H. Wang and D.G. Steel, Phys. Rev. A 43, 3823 (1991).

    Article  ADS  Google Scholar 

  25. G. Finkelstein, S. Bar-Ad, O. Carmel, I. Bar-Joseph, and Y. Levinson, Phys. Rev. B 47, 12964 (1993).

    Article  ADS  Google Scholar 

  26. H. Wang, M. Jiang, and D.G. Steel, Phys. Rev. Lett. 65, 1255 (1990).

    Article  ADS  Google Scholar 

  27. H. Wang and D.G. Steel, App. Phys. A33, 514 (1991).

    ADS  Google Scholar 

  28. M. Jiang, H. Wang, and D.G. Steel, Appl. Phys. Lett. (1992).

    Google Scholar 

  29. T. Takagahara, Phys. Rev. B 32, 7013 (1985).

    Article  ADS  Google Scholar 

  30. J. Hegarty, L. Goldner, and M.D. Sturge, Phys. Rev. B 30, 7346 (1984).

    Article  ADS  Google Scholar 

  31. J. Hegarty and M.D. Sturge, J. Opt. Soc. Am. B 2, 1143 (1985).

    Article  ADS  Google Scholar 

  32. R. Kachru, T.W. Mossberg, and S.R. Hartmann, Opt. Comm. 30, 57 (1979).

    Article  ADS  Google Scholar 

  33. T. Yajima and Y. Taira, J. Phys. Soc. of Japan 47, 1620 (1979).

    Article  ADS  Google Scholar 

  34. M.D. Webb, S.T. Cundiff, and D.G. Steel, Phys. Rev. B 43, 12658 (1991).

    Article  ADS  Google Scholar 

  35. H.H. Yaffe, Y. Prior, J.P. Harbison, and L.T. Florez, in Quantum Electronics Laser Science, 1991 Technical Digest Series (OSA, 1991.).

    Google Scholar 

  36. K. Leo, J. Shah, S. Schmitt-Rink, and K. Köhler, in VIIth International Symposium on Ultrafast Processes in Spectroscopy, (IOP, 1992, 1991.).

    Google Scholar 

  37. S.T. Cundiff, H. Wang, and D.G. Steel, Phys. Rev. B 46, 7248 (1992).

    Article  ADS  Google Scholar 

  38. M.D. Webb, S.T. Cundiff, and D.G. Steel, Phys. Rev. Lett. 66, 934 (1991).

    Article  ADS  Google Scholar 

  39. P. Roussignol, D. Ricard, C. Flytzanis, N. Neuroth, Phys. Rev. Let. 62, 312 (1989).

    Article  ADS  Google Scholar 

  40. G. Finkelstein, S. Bar-Ad, O. Carmel, and I. Bar-Joseph, Phys. Rev. B 47, 12964 (1993).

    Article  ADS  Google Scholar 

  41. C. Stafford, S. Schmitt-Rink, and W. Schäfer, Phys. Rev. B 41, 10000 (1990).

    Article  ADS  Google Scholar 

  42. J.B. Stark, W. H. Knox, D.S. Chemla, W. Schäfer, S. Schmitt-Rink, C. Stafford, Phys. Rev. Lett. 65, 3033 (1990).

    Article  ADS  Google Scholar 

  43. T. Rappen, J. Schröder, A. Leisse, M. Wegener, W. Schäfer, N.J. Sauer, and T.Y. Chang, Phys. Rev. B 44, 13093 (1991).

    Article  ADS  Google Scholar 

  44. J.B. Stark, W.H. Knox, and D.S. Chemla, Phys. Rev. Lett. 68, 3080 (1992).

    Article  ADS  Google Scholar 

  45. G. Röpke and R. Der, Phys. Stat. Sol. (B) 92, 501 (1979).

    Article  ADS  Google Scholar 

  46. M. Jiang, H. Wang, R. Merlin, M. Cardona, and D.G. Steel, submitted for publication (1993).

    Google Scholar 

  47. V.A. Kharchenko, Sov. Phys. JETP 56, 1140 (1982).

    Google Scholar 

  48. K. Fujii, T. Tomaru, T. Ohyama, and E. Otsuka, High Magnetic Fields in Semiconductor Physics II (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  49. M. Shinada and K. Tanaka, J. Phys. Soc. Jpn 29, 1258 (1970).

    Article  ADS  Google Scholar 

  50. T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 37, 1044 (1974).

    Article  ADS  Google Scholar 

  51. T. Englert and K. von Klitzing, Surface Sci. 73, 70 (1978).

    Article  ADS  Google Scholar 

  52. D. Stein, K. von Klitzing, and G. Weimann, Phys. Rev. Lett. 51, 130 (1983).

    Article  ADS  Google Scholar 

  53. M. Dobers, K. von Klitzing, and G. Weimann, Phys. Rev. B38, 5453 (1988).

    ADS  Google Scholar 

  54. G. Lommer, F. Malcher, and U. Rossler, Phys. Rev. B 32, 6965 (1985).

    Article  ADS  Google Scholar 

  55. P. Lefebvre, B. Gil, J.P. Lascaray, H. Mathieu, D. Bimberg, T. Fukunaga, H. Nakashima, Phys. Rev. B 37, 4171 (1988).

    Article  ADS  Google Scholar 

  56. S. Bar-Ad and I. Bar-Joseph, Phys. Rev. Lett. 66, 2491 (1991).

    Article  ADS  Google Scholar 

  57. M.J. Snelling, E. Blackwood, C.J. McDonagh, and R.T. Harley, PR B 45, 3922 (1992).

    Google Scholar 

  58. B. Bimberg, Advan. in Solid State Phys. XVIII, 195 (1977).

    Article  Google Scholar 

  59. G.E.W. Bauer, High Magnetic Fields in Semiconductor Physics II, G. Landwehr, Ed., Springer-Verlag (Berlin 1989).

    Google Scholar 

  60. H. Wang, M. Jiang, R. Merlin, and D.G. Steel, Phys. Rev. Lett. 69, 804 (1992).

    Article  ADS  Google Scholar 

  61. A.M. White, I. Hinchliffe, and P.J. Dean, Solid State Comm. 10, 497 (1972).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Steel, D.G., Wang, H., Jiang, M., Ferrio, K., Cundiff, S. (1994). Nonlinear Coherent Optical Effects in Semiconductors. In: Phillips, R.T. (eds) Coherent Optical Interactions in Semiconductors. NATO ASI Series, vol 330. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9748-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9748-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9750-3

  • Online ISBN: 978-1-4757-9748-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics