Advertisement

Many-Body Effects at the Fermi Edge of Modulation Doped Semiconductors: a Numerical Study

  • Wilfried Schäfer
  • Igal Brener
  • Wayne Knox
Part of the NATO ASI Series book series (NSSB, volume 330)

Abstract

Optical properties near the Fermi-edge of one-component Coulomb systems have been studied for more than half a century (for recent reviews see [1,2]). Originally the interest was focussed on x-ray spectra of metals. The development of modern crystal-growth technique allowed to realize similar systems in semiconductor materials. In these doped quantum-wells many-body effects which are responsible for the lineshape of optical spectra can be studied over a large range of densities applying the various tools of ultra-short time spectroscopy. The current interest in these systems results as well from the technological importance of them as from conceptual reasons, concerning basic aspects of quantum mechanics and manybody physics. Especially the study of nonlinear optical properties on an ultrashort timescale provides sensitive information about the relevant scattering processes which determine the dephasing and thus the lineshape of nonlinear spectra.

Keywords

Probe Pulse Ladder Diagram Dope System Excitonic Resonance Screen Coulomb Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    For a recent reviews, see e.g. K. Ohtaka, Y. Tanabe, Rev. Mod. Phys. 62, 929 (1990)ADSCrossRefGoogle Scholar
  2. (2).
    G. Mahan, Many-Particle Physics (Plenum, New York, 1990), Sec. 8.3CrossRefGoogle Scholar
  3. (3).
    R. Binder, S. W. Koch, M. Lindberg, W. Schäfer, F. Jahnke, Phys. Rev. B 43, 6520 (1991) and references therein.ADSCrossRefGoogle Scholar
  4. (4).
    W. Schäfer, in: ‘Optics of Semiconductor Nanostructures’, F. Henneberger, S. Schmitt-Rink, E. O. Göbel (eds.), Akademie Verlag, Berlin 1993.Google Scholar
  5. (5).
    A.E. Ruckenstein, S. Schmitt-Rink, Phys. Rev. B 35, 7551 (1987).ADSCrossRefGoogle Scholar
  6. (6).
    B. Roulet, J. Gavoret, P. Nozieres, Phys. Rev. 178, 1072 (1969).ADSCrossRefGoogle Scholar
  7. P. Nozieres, J. Gavoret, B. Roulet, Phys. Rev. 178, 1084 (1969)ADSCrossRefGoogle Scholar
  8. (7).
    M. Hartmann, W. Schäfer, phys. stat.sol. (b) 173, 165 (1992)ADSCrossRefGoogle Scholar
  9. (8).
    D.B. Tran Thoai, H. Haug, Z. Phys. B 91, 199 (1993)ADSCrossRefGoogle Scholar
  10. (9).
    M. Lindberg, R. Binder, S. W. Koch, Phys. Rev A 45, 1865 (1992)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Wilfried Schäfer
    • 1
  • Igal Brener
    • 2
  • Wayne Knox
    • 2
  1. 1.Forschungszentrum JülichHLRZJülichGermany
  2. 2.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations