Optical Generation and Detection of Carriers in Ultrafast Pump-Probe Spectroscopy of Semiconductors

  • Christopher J. Stanton
  • Alex V. Kuznetsov
  • Chang Sub Kim
Part of the NATO ASI Series book series (NSSB, volume 330)


One of the most common experimental approaches to studying the relaxation of carriers in semiconductors on the femtosecond time scale is pump-and-probe spectroscopy. Essentially, it consists in exciting nonequilibrium carriers by an intense femtosecond pump pulse and then probing the density distributions with a weak time-delayed probe pulse. Comparison of such pump-and-probe spectra with theoretical simulations of carrier kinetics provides important information for understanding relaxation mechanisms that govern ultrafast carrier dynamics.1


Pump Pulse Probe Transmission Bloch Equation Carrier Distribution Dephasing Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For reviews see W.H. Knox, in Hot Carriers in Semiconductor Nanostructures: Physics and Applications (ed. J. Shah, Academic Press, Boston, 1992), p 313.CrossRefGoogle Scholar
  2. J. Shah, Solid State Electron. 32, 1051 (1989).ADSCrossRefGoogle Scholar
  3. 2.
    S.M. Goodnick, and P. Lugli, Phys.Rev. B 38, 10135 (1988).ADSGoogle Scholar
  4. 3.
    D.W. Bailey, C.J. Stanton and K. Hess, Phys. Rev. B 42, 3423 (1990).ADSGoogle Scholar
  5. 4.
    M.A. Osman and D.K. Ferry, Phys.Rev. B 36, 6018 (1987).ADSGoogle Scholar
  6. 5.
    A.V. Kuznetsov, Phys.Rev. B 44, 8813 (1991)Google Scholar
  7. 6.
    T. Kuhn and F. Rossi, Phys. Rev. Lett. 69, 977 (1992).ADSCrossRefGoogle Scholar
  8. T. Kuhn and F. Rossi, Phys. Rev. B 46, 7496 (1992).ADSGoogle Scholar
  9. 7.
    M. Lindberg and S.W. Koch, Phys. Rev. B 38, 3342 (1988).ADSGoogle Scholar
  10. 8.
    W.-Z. Lin, R.W. Schoenlein, J.G. Fujimoto and E.P. Ippen, IEEE J. Quantum Electron. QE-24, 267 (1988).ADSCrossRefGoogle Scholar
  11. W.-Z. Lin, J.G. Fujimoto, E.P. Ippen and R.A. Logan, Appl. Phys. Lett. 50, 124 (1987).ADSCrossRefGoogle Scholar
  12. R.W. Schoenlein, W.-Z. Lin, E.P. Ippen and J.G. Fujimoto, Appl. Phys. Lett., 51, 1442 (1987).ADSCrossRefGoogle Scholar
  13. 9.
    W.H. Knox, C.A. Hirlimann, D.A.B. Miller, J. Shah, D.S. Chemla, and C.V. Shank, Phys. Rev. Lett. 56, 1191 (1986).ADSCrossRefGoogle Scholar
  14. W.H. Knox, D.S. Chemla, G. Livescu, J. Cunningham, and J.E. Henry, Phys. Rev. Lett., 62, 1290 (1988).ADSCrossRefGoogle Scholar
  15. 10.
    P.C. Becker et al, Phys. Rev. Lett. 61, 1647 (1988).ADSCrossRefGoogle Scholar
  16. 11.
    C.J. Stanton, A.V. Kuznetsov, and C.S. Kim, unpublished.Google Scholar
  17. 12.
    M. Lindberg and S.W. Koch, Phys. Rev. B 38, 7607 (1988).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Christopher J. Stanton
    • 1
  • Alex V. Kuznetsov
    • 1
  • Chang Sub Kim
    • 2
  1. 1.Department of PhysicsUniversity of FloridaGainesvilleUSA
  2. 2.Department of PhysicsChonnam National UniversityKwangjuKorea

Personalised recommendations