Advertisement

Coherent Excitonic and Free Carrier Dynamics in Bulk GaAs and Heterostructures

  • T. Kuhn
  • E. Binder
  • F. Rossi
  • A. Lohner
  • K. Rick
  • P. Leisching
  • A. Leitenstorfer
  • T. Elsaesser
  • W. Stolz
Part of the NATO ASI Series book series (NSSB, volume 330)

Abstract

Coherent dynamics in atomic and molcular systems has been investigated for a long time. The first spin echo experiment1 was performed in 1950 on protons in a water solution of Fe+++ ions. Pulses in the radio frequency range were generated by means of a gated oscillator with pulse widths between 20 μs and a few milliseconds. With these pulses dephasing times of the order of 10 ms have been measured. In the 1960s echo experiments were brought into the visible range.2,3 A Q-switched ruby laser produced pulses of approximately 10 ns duration which were used to observe photon echoes from ruby. In this case the dephasing times were of the order of 100 ns. For the observation of such coherent dynamics the pulse width has to be shorter than the dephasing time. In semiconductors typical dephasing times are much shorter, they are in the range of a few picoseconds down to some femtoseconds. Therefore, experiments had to wait until the development of suitable lasers which were able to generate sub-picosecond pulses.

Keywords

Quantum Beat Bulk GaAs Photon Echo Coherent Phonon Dephasing Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. L. Hahn, Spin echoes, Phys. Rev. 80, 580 (1950).ADSMATHGoogle Scholar
  2. 2.
    N. A. Kurnit, I. D. Abella, and S. R. Hartmann, Observation of a photon echo, Phys. Rev. Lett. 13, 567 (1964).ADSGoogle Scholar
  3. 3.
    I. D. Abella, N. A. Kurnit, and S. R. Hartmann, Photon echoes, Phys. Rev. 141, 391 (1966).ADSGoogle Scholar
  4. 4.
    J. Shah and R. C. C. Leite, Radiative recombination from photoexcited hot carriers in GaAs, Phys. Rev. Lett. 22, 1304 (1969).ADSGoogle Scholar
  5. 5.
    C. V. Shank, R. L. Fork, R. F. Leheny, and J. Shah, Dynamics of photoexcited GaAs band-edge absorption with subpicosecond resolution, Phys. Rev. Lett. 42, 112 (1979).ADSGoogle Scholar
  6. 6.
    R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, Compression of optical pulses to six femtoseconds by using cubic phase compensation, Optics Lett. 12, 483 (1987).ADSGoogle Scholar
  7. 7.
    J. Shah, Photoexcited hot carriers: From cw to 6 fs in 20 years, Solid State Electron. 32, 1051 (1989).ADSGoogle Scholar
  8. 8.
    J. Shah, B. Deveaud, T. C. Damen, W. T. Tsang, A. C. Gossard, and P. Lugli, Determination of intervalley scattering rates in GaAs by subpicosecond luminescence spectroscopy, Phys. Rev. Lett. 59, 2222 (1987).ADSGoogle Scholar
  9. 9.
    H. J. Polland, W. W. Rühle, H. J. Queisser, and K. Ploog, Fröhlich interaction in two-dimensional GaAs/AlGaAs systems, Phys. Rev. B 36, 7722 (1987).ADSGoogle Scholar
  10. 10.
    K. Leo, W. W. Rühle, H. J. Queisser, and K. Ploog, Reduced dimensionality of hot-carrier relaxation in GaAs quantum wells, Phys. Rev. B 37, 7121 (1988).ADSGoogle Scholar
  11. 11.
    J. F. Ryan and M. Tatham, Picosecond optical studies of 2D electron — 2D phonon dynamics, Solid State Electron. 32, 1429 (1989).ADSGoogle Scholar
  12. 12.
    T. Elsaesser, J. Shah, L. Rota, and P. Lugli, Initial thermalization of photoexcited carriers in GaAs studied by femtosecond luminescence spectroscopy, Phys. Rev. Lett. 66, 1757 (1991).ADSGoogle Scholar
  13. 13.
    L. Rota, P. Lugli, T. Elsaesser, and J. Shah, Ultrafast thermalization of photoexcited carriers in polar semiconductors, Phys. Rev. B 47, 4226 (1993).ADSGoogle Scholar
  14. 14.
    H. Kurz, Femtosecond spectroscopy of hot carrier relaxation in bulk semiconductors, Semicond. Sci.Technol. 7, B124 (1992).Google Scholar
  15. 15.
    R. G. Ulbrich, J. A. Kash, and J. C. Tsang, Hot-electron recombination at neutral acceptors in GaAs: A cw probe of femtosecond intervalley scattering, Phys. Rev. Lett. 62, 949 (1989).ADSGoogle Scholar
  16. 16.
    J. A. Kash, Carrier-carrier scattering in GaAs: Quantitative measurements from hot (e, A0) luminescence, Phys. Rev. B 40, 3455 (1989).ADSGoogle Scholar
  17. 17.
    D. W. Snoke, W. W. Rühle, Y.-C. Lu, and E. Bauser, Nonthermalized distributions of electrons on picosecond time scale in GaAs, Phys. Rev. Lett. 68, 990 (1992).ADSGoogle Scholar
  18. 18.
    C. L. Peterson and S. A. Lyon, Observation of hot-electron energy loss through the emission of phonon-plasmon coupled modes in GaAs, Phys. Rev. Lett. 65, 760 (1990).ADSGoogle Scholar
  19. 19.
    J. L. Oudar, A. Migus, D. Hulin, G. Grillon, J. Etchepare, and A. Antonetti, Femtosecond orientational relaxation of photoexcited carriers in GaAs, Phys. Rev. Lett. 53, 384 (1984).ADSGoogle Scholar
  20. 20.
    H. Roskos, B. Rieck, A. Seilmeier, and W. Kaiser, Carrier cooling in nonpolar semiconductors studied with subpicosecond time-resolution, Solid State Electron. 32, 1437 (1989).ADSGoogle Scholar
  21. 21.
    C. W. W. Bradley, R. A. Taylor, and J. F. Ryan, Femtosecond electron and hole therm alizati on in AlGaAs, Solid State Electron. 32, 1173 (1989).ADSGoogle Scholar
  22. 22.
    T. Gong, P. M. Fauchet, J. F. Young, and P. J. Kelly, Femtosecond gain dynamics due to initial thermalization of hot carriers injected at 2 eV in GaAs, Phys. Rev. B 44, 6542 (1991).ADSGoogle Scholar
  23. 23.
    P. M. Fauchet and T. Gong, Femtosecond dynamics of hot-carriers in GaAs, in Ultrafast Lasers Probe Phenomena in Semiconductors and Superconductors, edited by R. Alfano, SPIE Proc. Vol. 1677 (SPIE, 1992) p. 25.Google Scholar
  24. 24.
    J.-P. Foing, D. Hulin, M. Joffre, M. K. Jackson, J.-L. Oudar, C. Tanguy, and M. Combescot, Absorption edge singularities in highly excited semiconductors, Phys. Rev. Lett. 68, 110 (1992).ADSGoogle Scholar
  25. 25.
    W. Pötz and P. Kocevar, Electronic power transfer in pulsed laser excitation of polar semiconductors, Phys. Rev. B 28, 7040 (1983).ADSGoogle Scholar
  26. 26.
    T. F. Zheng, W. Cai, P. Hu, and M. Lax, Simulation of ultrafast relaxation of photoexcited electrons via analytical distribution functions, Solid State Electron. 32, 1089 (1989).ADSGoogle Scholar
  27. 27.
    K. Leo and J. H. Collet, Influence of electron-hole scattering on the plasma thermalization in doped GaAs, Phys. Rev. B 44, 5535 (1991).ADSGoogle Scholar
  28. 28.
    A. A. Grinberg and S. Luryi, Nonstationary quasiperiodic energy distribution of an electron gas upon ultrafast thermal excitation, Phys. Rev. Lett. 65, 1251 (1990).ADSGoogle Scholar
  29. 29.
    A. A. Grinberg, S. Luryi, N. L. Schryer, R. K. Smith, C. Lee, U. Ravaioli, and E. Sangiorgi, Adiabatic approach to the dynamics of nonequilibirium electron ensembles in semiconductors, Phys. Rev. B 44, 10536 (1991).ADSGoogle Scholar
  30. 30.
    K. El Sayed, T. Wicht, H. Haug, and L Bányai, Study of the Coulomb Boltzmann kinetics in a quasi-twodimensional electron gas by eigenfunction expansions and Monte Carlo simulations, Z. Phys. B 86, 345 (1992).ADSGoogle Scholar
  31. 31.
    J. Collet and T. Amand, Athermal and thermal relaxation of high density electron-hole plasma in GaAs, Physica 134B, 394 (1985).Google Scholar
  32. 32.
    R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, Carrier-carrier scattering and optical dephasing in highly excited semiconductors, Phys. Rev. B 45, 1107 (1992).ADSGoogle Scholar
  33. 33.
    M. A. Osman and D. K. Ferry, Monte Carlo investigation of the electron-hole-interaction effects on the ultrafast relaxation of hot photoexcited carriers in GaAs, Phys. Rev. B 36, 6018 (1987).ADSGoogle Scholar
  34. 34.
    P. Lugli, P. Bordone, S. Gualdi, P. Poli, and S. M. Goodnick, Hot phonons in quantum well systems, Solid-State Electron. 32, 1881 (1989).ADSGoogle Scholar
  35. 35.
    P. Lugli, P. Bordone, L. Reggiani, M. Rieger, P. Kocevar, and S. M. Goodnick, Monte Carlo studies of nonequilibrium phonon effects in polar semiconductors and quantum wells. I. Laser photoexcitation, Phys. Rev. B 39, 7852 (1989).ADSGoogle Scholar
  36. 36.
    C. J. Stanton, D. W. Bailey, and K. Hess, Monte Carlo modeling of femtosecond relaxation processes in AlGaAs/GaAs quantum wells, IEEE J. Quantum Electron. QE-24, 1614 (1988).ADSGoogle Scholar
  37. 37.
    C. J. Stanton, D. W. Bailey, and K. Hess, Femtosecond pump, continuum probe nonlinear absorption in GaAs, Phys. Rev. Lett. 65, 231 (1990).ADSGoogle Scholar
  38. 38.
    D. W. Bailey, M. A. Artaki, C. J. Stanton, and K. Hess, Ensemble Monte Carlo simulations of femtosecond thermalization of low-energy photoexcited electrons in GaAs quantum wells, J. Appl. Phys. 62, 4638 (1987).ADSGoogle Scholar
  39. 39.
    D. K. Ferry, A. M. Kriman, H. Hida, and S. Yamaguchi, Collision retardation and its role in femtosecond-laser excitation of semiconductor plasmas, Phys. Rev. Lett. 67, 633 (1991).ADSGoogle Scholar
  40. 40.
    D. W. Bailey, C. J. Stanton, and K. Hess, Numerical studies of femtosecond carrier dynamics in GaAs, Phys. Rev. B 42, 3423 (1990).ADSGoogle Scholar
  41. 41.
    U. Hohenester, P. Supancic, P. Kocevar, X. Q. Zhou, W. Kütt, and H. Kurz, Subpicosecond thermaliztion and relaxation of highly photoexcited electrons and holes in intrinsic and p-type gaas and inp, Phys. Rev. B 47, 13233 (1993).ADSGoogle Scholar
  42. 42.
    A. Mysyrowicz, D. Hulin, A. Antonetti, A. Migus, W. T. Masselink, and H. Morkoç, “Dressed excitons” in a multiple-quantum-well structure: Evidence for an optical Stark effect with femtosecond response time, Phys. Rev. Lett. 56, 2748 (1986).ADSGoogle Scholar
  43. 43.
    W. H. Knox, D. S. Chemla, D. A. B. Miller, J. B. Stark, and S. Schmitt-Rink, Femtosecond ac Stark effect in semiconductor quantum wells: Extreme low-and high-intensity limits, Phys. Rev. Lett. 1989, 1189(1989).ADSGoogle Scholar
  44. 44.
    P. C. Becker, H. L. Fragnito, C. H. Brito Cruz, R. L. Fork, J. E. Cunningham, J. E. Henry, and C. V. Shank, Femtosecond photon echoes from band-to-band transitions in GaAs, Phys. Rev. Lett. 61, 1647 (1988).ADSGoogle Scholar
  45. 45.
    Y. Masumoto, S. Shionoya, and T. Takagahara, Optical dephasing of excitonic polaritons in CuCl studied by time-resolved, nondegenerate four-wave mixing, Phys. Rev. Lett. 51, 923 (1983).ADSGoogle Scholar
  46. 46.
    L. Schultheis, M. D. Sturge, and J. Hegarty, Photon echoes from two-dimensional excitons in GaAs-AlGaAs quantum wells, Appl. Phys. Lett. 47, 995 (1985).ADSGoogle Scholar
  47. 47.
    L. Schultheis, J. Kuhl, A. Honold, and C. W. Tu, Picosecond phase coherence and orientational relaxation of excitons in GaAs, Phys. Rev. Lett. 57, 1797 (1986).ADSGoogle Scholar
  48. 48.
    A. Honold, L. Schultheis, J. Kuhl, and C. W. Tu, Reflected degenerate four-wave mixing on GaAs single quantum wells, Appl. Phys. Lett. 52, 2105 (1988).ADSGoogle Scholar
  49. 49.
    J. Kuhl, A. Honold, L. Schultheis, and C. W. Tu, Optical dephasing and orientational relaxation of Wannier excitons and free carriers in GaAs and GaAs/AlGaAs quantum wells, Adv. in Solid State Phys. 29, 157 (1989).Google Scholar
  50. 50.
    E. O. Göbel, Ultrafast spectroscopy of semiconductors, Adv. in Solid State Phys. 30, 269 (1990).Google Scholar
  51. 51.
    K. Leo, E. O. Göbel, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller, K. Köhler, and P. Ganser, Subpicosecond four-wave mixing in GaAs/AlGaAs quantum wells, Phys. Rev. B 44, 5726 (1991).ADSGoogle Scholar
  52. 52.
    G. Noll, U. Siegner, S. G. Shevel, and E. O. Göbel, Picosecond stimulated photon echo due to intrinsic excitations in semiconductor mixed crystals, Phys. Rev. Lett. 64, 792 (1990).ADSGoogle Scholar
  53. 53.
    D. Fröhlich, A. Kulik, B. Uebbing, A. Mysyrowicz, V. Langer, H. Stolz, and W. von der Osten, Coherent propagation and quantum beats of quadrupole polaritons in CuO, Phys. Rev. Lett. 67, 2343 (1991).ADSGoogle Scholar
  54. 54.
    E. O. Göbel, K. Leo, T. C. Damen, J. Shah, S. Schmitt-Rink, W. Schäfer, J. F. Müller, and K. Köhler, Quantum beats of excitons in quantum wells, Phys. Rev. Lett. 64, 1801 (1990).ADSGoogle Scholar
  55. 55.
    V. Langer, H. Stolz, and W. von der Osten, Observation of quantum beats in the resonance fluorescence of free excitons, Phys. Rev. Lett. 64, 854 (1990).ADSGoogle Scholar
  56. 56.
    K. Leo, T. C. Damen, J. shah, E. O. Göbel, and K. Köhler, Quantum beats of light hole and heavy hole excitons in quantum wells, Appl. Phys. Lett. 57, 19 (1990).ADSGoogle Scholar
  57. 57.
    K. Leo, J. Shah, E. O. Göbel, T. C. Damen, K. Köhler, and P. Ganser, Tunneling in semiconductor heterostructures studied by subpicosecond four-wave mixing, Appl. Phys. Lett. 56, 2031 (1990).ADSGoogle Scholar
  58. 58.
    K. Leo, Dynamics of wavepackets in GaAs/AlGaAs heterostructures, Adv. in Solid State Phys. 32, 97 (1992).ADSGoogle Scholar
  59. 59.
    H. G. Roskos, M. C. Nuss, J. Shah, K. Leo, D. A. B. Miller, A. M. Fox, S. Schmitt-Rink, and K. Köhler, Coherent submillimeter-wave emission from charge oscillations in a double-well potential, Phys. Rev. Lett. 68, 2216 (1992).ADSGoogle Scholar
  60. 60.
    J. Feldmann, Bloch oscillations in a semiconductor superlattice, Adv. in Solid State Phys. 32, 81 (1992).Google Scholar
  61. 61.
    C. Waschke, H. G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Coherent submilimeter-wave emission from Bloch oscillations in a semiconductor superlattice, Phys. Rev. Lett. 70, 3319 (1993).ADSGoogle Scholar
  62. 62.
    K. Leo, M. Wegener, J. Shah, D. S. Chemla, E. O. Göbel, T. C. Damen, S. Schmitt-Rink, and W. Schäfer, Effects of coherent polarization interactions on time-resolved degenerate four-wave mixing, Phys. Rev. Lett. 65, 1340 (1990).ADSGoogle Scholar
  63. 63.
    S. Weiss, M.-A. Mycek, J.-Y. Bigot, S. Schmitt-Rink, and D. S. Chemla, Collective effects in excitonic free induction decay: Do semiconductors and atoms emit coherent light in different ways?, Phys. Rev. Lett. 69, 2685 (1992).ADSGoogle Scholar
  64. 64.
    D.-S. Kim, J. Shah, J. E. Cunningham, T. C. Damen, W. Schäfer, M. Hartmann, and S. Schmitt-Rink, Giant excitonic resonance in time-resolved four-wave mixing in quantum wells, Phys. Rev. Lett. 68, 1006 (1992).ADSGoogle Scholar
  65. 65.
    D.-S. Kim, J. Shah, T. C. Damen, W. Schäfer, F. Jahnke, S. Schmitt-Rink, and K. Köhler, Unusually slow temporal evolution of femtosecond four-wave-mixing signals in intrinsic GaAs quantum wells: Direct evidence for the dominance of interaction effects, Phys. Rev. Lett. 69, 2725 (1992).ADSGoogle Scholar
  66. 66.
    A. Lohner, K. Rick, P. Leisching, A. Leitenstorfer, T. Elsaesser, T. Kuhn, F. Rossi, and W. Stolz, Coherent optical polarization of bulk GaAs studied by femtosecond photon-echo spectroscopy, Phys. Rev. Lett. 71, 77 (1993).ADSGoogle Scholar
  67. 67.
    P. C. M. Planken, M. C. Nuss, I. Brener, K. W. Goossen, M. S. C. Luo, S. L. Chuang, and L. Pfeiffer, Terahertz emission in single quantum wells after coherent optical excitation of light hole and heavy hole excitons, Phys. Rev. Lett. 69, 3800 (1992).ADSGoogle Scholar
  68. 68.
    C. Comte and G. Mahler, Dynamic Stark effect in interacting electron-hole systems: Light enhanced excitons, Phys. Rev. B 34, 7164 (1986).ADSGoogle Scholar
  69. 69.
    C. Comte and G. Mahler, Excitonic reference state of a model semiconductor in the dynamic Stark regime, Phys. Rev. B 38, 10517 (1988).ADSGoogle Scholar
  70. 70.
    R. Zimmermann, K. Kilimann, W. D. Kraeft, D. Kremp, and G. Röpke, Dynamical screening and self-energy of excitons in the electron-hole plasma, phys. stat. sol (b) 90, 175 (1978).ADSGoogle Scholar
  71. 71.
    R. Zimmermann, On the dynamical stark effect of excitons: The low field limit, phys. stat. sol (b) 146, 545 (1988).ADSGoogle Scholar
  72. 72.
    S. Schmitt-Rink, C. Ell, and H. Haug, Many-body effects in the absorption, gain, and luminescence spectra of semiconductor quantum well structures, Phys. Rev. B 33, 1183 (1986).ADSGoogle Scholar
  73. 73.
    S. Schmitt-Rink, D. S. Chemla, and H. Haug, Nonequilibrium theory of the optical Stark effect and spectral hole burning in semiconductors, Phys. Rev. B 37, 941 (1988).ADSGoogle Scholar
  74. 74.
    H. Haug, Microscopic theory of the optical band edge nonlinearities, in Optical Nonlinearities and Instabilities in Semiconductors, edited by H. Haug (Academic, San Diego, 1988) p. 53.Google Scholar
  75. 75.
    F. Bechstedt and S. Glutsch, Non-equilibrium screening and plasmons in a coherently pumped semiconductor, J. Phys.: Condens. Matter 3, 7145 (1991).ADSGoogle Scholar
  76. 76.
    M. Hartmann, H. Stolz, and R. Zimmermann, Kinetics of screening in optically excited semiconductors, phys. stat. sol (b) 159, 35 (1990).ADSGoogle Scholar
  77. 77.
    K. Henneberger, W. Schäfer, and F. Jahnke, Optical and transport nonlinearities in laser excited semiconductors, Physica Scripta T35, 129 (1991).ADSGoogle Scholar
  78. 78.
    K. Henneberger and H. Haug, Nonlinear optics and transport in laser-excited semiconductors, Phys. Rev. B 38, 9759 (1988).ADSGoogle Scholar
  79. 79.
    A. V. Kuznetsov, Interaction of ultrashort light pulses with semiconductors: Effective Bloch equations with relaxation and memory effects, Phys. Rev. B 44, 8721 (1991).ADSGoogle Scholar
  80. 80.
    D. B. Tran Thoai and H. Haug, Coulomb quantum kinetics in pulse-excited semiconductors, Z. Phys. B 91, 199(1993).ADSGoogle Scholar
  81. 81.
    H. Haug and C. Ell, Coulomb quantum kinetics in a dense electron gas, Phys. Rev. B 46, 2126 (1992).ADSGoogle Scholar
  82. 82.
    W. Schäfer, Theory of dense nonequilibrium exciton systems, in Optical Nonlinearities and Instabilities in Semiconductors, edited by H. Haug (Academic, San Diego, 1988) p. 133.Google Scholar
  83. 83.
    I. Balslev, R. Zimmermann, and A. Stahl, Two-band density-matrix approach to nonlinear optics of excitons, Phys. Rev. B 40, 4095 (1989).ADSGoogle Scholar
  84. 84.
    A. Stahl, RPA-dynamics of the electronic density matrix in a two-band semiconductor, Z. Phys. B 72, 371 (1988).ADSGoogle Scholar
  85. 85.
    A. Stahl, Coupled two-level systems and the dynamics of semiconductor electrons, phys. stat. sol (b) 159, 327 (1990).ADSGoogle Scholar
  86. 86.
    R. Zimmermann, Theory of dephasing in semiconductor optics, phys. stat. sol (b) 173, 129 (1992).ADSGoogle Scholar
  87. 87.
    S. Schmitt-Rink and D. S. Chemla, Collective excitations and the dynamical Stark effect in a coherently driven exciton system, Phys. Rev. Lett. 57, 2752 (1986).ADSGoogle Scholar
  88. 88.
    M. Lindberg and S. W. Koch, Theory of the optical Stark effect in semiconductors under ultrashort-pulse excitation, phys. stat. sol (b) 150, 379 (1988).ADSGoogle Scholar
  89. 89.
    M. Lindberg and S. W. Koch, Effective Bloch equations for semiconductors, Phys. Rev. B 38, 3342 (1988).ADSGoogle Scholar
  90. 90.
    W. Schäfer, F. Jahnke, and S. Schmitt-Rink, Many-particle effects on transient four-wave-mixing signals in semiconductors, Phys. Rev. B 47, 1217 (1993).ADSGoogle Scholar
  91. 91.
    E. Heiner, Evolution equations for highly excited direct semiconductors in the athermal stage, phys. stat. sol (b) 146, 655 (1988).ADSGoogle Scholar
  92. 92.
    E. Heiner and W. Kleinig, Solutions of optical Bloch equations for highly excited direct gap semiconductors in a time-dependent mean-field approach, Physica Scripta 46, 88 (1992).ADSGoogle Scholar
  93. 93.
    R. Zimmermann and M. Hartmann, Resonant and off-resonant light-matter interaction in semiconductors, phys. stat. sol (b) 150, 365 (1988).ADSGoogle Scholar
  94. 94.
    M. Wegener, D. S. Chemla, S. Schmitt-Rink, and W. Schäfer, Line shape of time-resolved four-wave mixing, Phys. Rev. A 42, 5675 (1990).ADSGoogle Scholar
  95. 95.
    T. Kuhn and F. Rossi, Analysis of coherent and incoherent phenomena in photoexcited semiconductors: A Monte Carlo approach, Phys. Rev. Lett. 69, 977 (1992).ADSGoogle Scholar
  96. 96.
    T. Kuhn and F. Rossi, Monte Carlo simulation of ultrafast processes in photoexcited semiconductors: Coherent and incoherent dynamics, Phys. Rev. B 46, 7496 (1992).ADSGoogle Scholar
  97. 97.
    L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962).MATHGoogle Scholar
  98. 98.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981).Google Scholar
  99. 99.
    C. Jacoboni and L. Reggiani, The Monte Carlo method for the solution of charge transport in semiconductors with applications to covalent material, Rev. Mod. Phys. 55, 645 (1983).ADSGoogle Scholar
  100. 100.
    C. Jacoboni and P. Lugli, The Monte Carlo Method for Semiconductor Device Simulations (Springer, Wien, 1989).Google Scholar
  101. 101.
    R. Zimmermann, Transverse relaxation and polarizations specifics in the dynamical Stark effect, phys. stat. sol (b) 159, 317 (1990).ADSGoogle Scholar
  102. 102.
    R. Zimmermann, Carrier kinetics for ultrafast optical pulses, J. Lumin. 53, 187 (1992).Google Scholar
  103. 103.
    R. Zimmermann and J. Wauer, Non-Markovian relaxation in semiconductors: An exactly soluble model, Proc. DPC (Boston, 1993), to be published in J. Lumin.Google Scholar
  104. 104.
    D. B. Tran Thoai and H. Haug, Band-edge quantum kinetics for coherent ultrashort-pulse spectroscopy in polar semiconductors, Phys. Rev. B 47, 3574 (1993).ADSGoogle Scholar
  105. 105.
    F. Rossi, T. Kuhn, J. Schilp, and E. Schöll, Analysis of the coupled coherent and incoherent dynamics in photoexcited semicondutors: A Monte Carlo approach, in Proc. 21st ICPS, Beijing, China, edited by P. Jiang and H. Zheng (World Scientific, Singapore, 1992) p. 165.Google Scholar
  106. 106.
    A. V. Kuznetsov, Coherent and non-Markovian effects in ultrafast relaxation of photoexcited hot carrier: A model study, Phys. Rev. B 44, 13381 (1991).ADSGoogle Scholar
  107. 107.
    J. Schilp, T. Kuhn, and G. Mahler, Energy relaxation and dephasing of photoexcited carriers: Memory effects and cross terms between different interactions, Proc. 8th HCIS (Oxford, 1993), to be published in Semicond. Sci. Technol.Google Scholar
  108. 108.
    G. C. Cho, W. Kütt, and H. Kurz, Subpicosecond time-resolved coherent-phonon oscillations in GaAs, Phys. Rev. Lett. 65, 764 (1990).ADSGoogle Scholar
  109. 109.
    W. Kütt, Coherent phonons in III-V-compounds, Adv. in Solid State Phys. 32, 113 (1992).Google Scholar
  110. 110.
    H. Haug and S. Schmitt-Rink, Electron theory of the optical properties of laser-excited semiconductors, Prog. Quant. Electr. 9, 3 (1984).ADSGoogle Scholar
  111. 111.
    D. C. Scott, R. Binder, and S. W. Koch, Ultrafast dephasing through acoustic plasmon undamping in nonequilibrium electron-hole plasmas, Phys. Rev. Lett. 69, 347 (1992).ADSGoogle Scholar
  112. 112.
    M. Lindberg, R. Binder, and S. W. Koch, Theory of the semiconductor photon echo, Phys. Rev. A 45, 1865(1992).ADSGoogle Scholar
  113. 113.
    F. Rossi, S. Haas, and T. Kuhn, Analysis of coherent and incoherent ultrafast dynamics in photoexcited semiconductors: A Monte Carlo approach, Proc. 8th HCIS (Oxford, 1993), to be published in Semicond. Sci. Technol.Google Scholar
  114. 114.
    T. Yajima and Y. Taira, Spatial optical parametric coupling of picosecond light pulses and transverse relaxation effect in resonant media, J. Phys. Soc. Jpn. 47, 1620 (1979).ADSGoogle Scholar
  115. 115.
    J. R. Kuklinski and S. Mukamel, Generalized semiconductor Bloch equations: Local fields and transient gratings, Phys. Rev. B 44, 11253 (1991).ADSGoogle Scholar
  116. 116.
    R. G. Ulbrich, Dense nonequilibrium excitations: Band edge absorption spectra of highly excited Gallium Arsenide, in Optical Nonlinearities and Instabilities in Semiconductors, edited by H. Haug (Academic, San Diego, 1988) p. 121.Google Scholar
  117. 117.
    G. Bastard, C. Delalande, R. Ferreira, and H. W. Liu, Assisted relaxation and vertical transport of electrons, holes and excitons in semiconductor heterostructures, J. Lumin. 44, 247 (1989).Google Scholar
  118. 118.
    A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, Excitonic effects in coupled quantum wells, Phys. Rev. B 44, 6231 (1991).ADSGoogle Scholar
  119. 119.
    A. P. Heberle, W. W. Rühle, M. G. W. Alexander, and K. Köhler, Resonances in tunneling between quantum wells, Semcond. Sci. Technol. 7, B421 (1992).Google Scholar
  120. 120.
    R. Ferreira, P. Rolland, Ph. Roussignol, C. Delalande, A. Vinattieri, L. Carraresi, M. Colocci, N. Roy, B. Sermage, J. F. Palmier, and B. Etienne, Time-resolved exciton transfer in GaAs/AlGaAs double-quantum-well structures, Phys. Rev. B 45, 11782 (1992).ADSGoogle Scholar
  121. 121.
    S.-L. Chuang, S. Schmitt-Rink, D. A. B. Miller, and D. S. Chemla, Exciton Green’s-function approach to optical absorption in a quantum well with an applied electric field, Phys. Rev. B 43, 1500 (1991).ADSGoogle Scholar
  122. 122.
    Y. Z. Hu, R. Binder, and S. W. Koch, Photon echo and valence-band mixing in semiconductor quantum wells, Phys. Rev. B 47, 15679 (1993).ADSGoogle Scholar
  123. 123.
    S. L. Chuang, S. Schmitt-Rink, B. I. Greene, P. N. Saeta, and A. F. J. Levi, Optical rectification at semiconductor surfaces, Phys. Rev. Lett. 68, 102 (1992).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • T. Kuhn
    • 1
  • E. Binder
    • 1
  • F. Rossi
    • 2
  • A. Lohner
    • 3
  • K. Rick
    • 3
  • P. Leisching
    • 3
  • A. Leitenstorfer
    • 3
  • T. Elsaesser
    • 3
    • 4
  • W. Stolz
    • 2
  1. 1.Institut für Theoretische Physik und SynergetikUniversität StuttgartStuttgartGermany
  2. 2.Fachbereich Physik und Zentrum für MaterialwissenschaftenUniversität MarburgMarburgGermany
  3. 3.Physik Department E11Technische Universität MünchenGarchingGermany
  4. 4.Max-Born-Institut für Nichtlineare Optik und KurzzeitspektroskopieBerlinGermany

Personalised recommendations