Skip to main content

Vertical Transport Studied by Sub-Picosecond Four-Wave Mixing Experiments

  • Chapter
Coherent Optical Interactions in Semiconductors

Part of the book series: NATO ASI Series ((NSSB,volume 330))

Abstract

Since the realization of semiconductor heterostructures vertical transport of electrically injected carriers has been one of the most interesting topics in semiconductor physics.1,2 Precise engineering of semiconductor layers and thus electronic energy levels allows the tailoring of transport properties over a wide range and has even led to the invention of semiconductor devices relying on ballistic electron transport.1,3 In addition, negative differential resistance (NDR) can be realized by using tunneling diodes containing double-barrier heterostructures4 or a superlattice structure.5,6 Actually, the proposal of Esaki and Tsu5 to use electronic Bloch oscillations in the miniband of a semiconductor superlattice to realize NDR marked the starting point for the physics and applications of semiconductor heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Weisbuch and B. Vinter, ‘Quantum Semiconductor Structures (Fundamentals and Applications)’, Academic Press, San Diego (1991).

    Google Scholar 

  2. ‘Physics of Quantum Electron Devices’, F. Capasso, ed., Springer-Verlag, Berlin (1990).

    Google Scholar 

  3. M. Heiblum and M.V. Fischetti, ‘Ballistic Electron Transport in Hot Electron Transistors’, in: ‘Physics of Quantum Electron Devices’, F. Capasso, ed., Springer-Verlag, Berlin (1990).

    Google Scholar 

  4. T.C.L.G. Sollner, W.D. Goodhue, P.E. Tannenwald, C.D. Parker, and D.D. Peck, Appl. Phys. Lett. 43:588 (1983).

    Article  ADS  Google Scholar 

  5. L. Esaki and R. Tsu, IBM J. Dev. 14:61 (1970).

    Article  Google Scholar 

  6. A. Sibille, J.F. Palmier, H. Wang, and F. Mollot, Phys. Rev. Lett. 64:52 (1990).

    Article  ADS  Google Scholar 

  7. Y. Masumoto, S. Tarucha, and H. Okamato, Phys. Rev. B33:5961 (1986).

    ADS  Google Scholar 

  8. M. Tsuchiya, T. Matsusue, and H. Sakaki, Phys. Rev. Lett. 59:2356 (1987).

    Article  ADS  Google Scholar 

  9. D.Y. Oberli, J. Shah, T.C. Damen, C.W. Tu, T.Y. Chang, D.A.B. Miller, J.E. Henry, R.F. Kopf, N. Sauer, and A.E. DiGiovanni, Phys. Rev. B40:3028 (1989).

    ADS  Google Scholar 

  10. M.G.W. Alexander, W.W. Rühle, R. Sauer, and W.T. Tsang, Appl. Phys. Lett. 55:885 (1989).

    Article  ADS  Google Scholar 

  11. T. Matsusue, M. Tsuchiya, J.N. Schulman, and H. Sakaki, Phys. Rev. B42:5719 (1990).

    ADS  Google Scholar 

  12. H.T. Grahn, H. Schneider, W.W. Rühle, K. von Klitzing, and K. Ploog, Phys. Rev. Lett. 64:2426 (1990).

    Article  ADS  Google Scholar 

  13. R.J. Manning, P.J. Bradley, A. Miller, J.S. Roberts, P. Mistry, and M. Pate, Electron. Lett. 24:854 (1988).

    Article  Google Scholar 

  14. G. Livescu, D.A.B. Miller, T. Sizer, D.J. Burrows, J.E. Cunningham, A.C. Gossard, and J.H. English, Appl. Phys. Lett. 54:748 (1989).

    Article  ADS  Google Scholar 

  15. A.M. Fox, D.A.B. Miller, G. Livescu, J.E. Cunningham, and W.Y. Jan, IEEE J. Quantum Electron. 27:2281 (1991).

    Article  ADS  Google Scholar 

  16. J. Feldmann, K.W. Goossen, D.A.B. Miller, A.M. Fox, J.E. Cunningham, and W.Y. Jan, Appl. Phys. Lett. 59:66 (1991).

    Article  ADS  Google Scholar 

  17. G. Cohen and I. Bar-Joseph, Phys. Rev. B46:9857 (1992).

    ADS  Google Scholar 

  18. A. Miller, C.B. Park, and P. Li Kam Wa, Appl. Phys. Lett. 60:97 (1992).

    Article  ADS  Google Scholar 

  19. J.A. Cavailles, D.A.B. Miller, J.E. Cunningham, P. Li Kam Wa, and A. Miller, IEEE J. Quantum Electron. 28:2486 (1992).

    Article  ADS  Google Scholar 

  20. For a recent review, see D.A.B. Miller, Opt. and Quantum Electron. 22:61 (1990).

    Article  Google Scholar 

  21. K.W. Goossen, J.E. Cunningham, and W.Y. Jan, Appl. Phys. Lett. 57:2582 (1990).

    Article  ADS  Google Scholar 

  22. K.W. Goossen, J.E. Cunningham, and W.Y. Jan, Appl. Phys. Lett. 59:3622 (1991).

    Article  ADS  Google Scholar 

  23. K. Leo, J. Shah, E.O. Göbel, J.P. Gordon, and S. Schmitt-Rink, Semicond. Sci. Technol. 7:B394 (1992).

    Article  Google Scholar 

  24. J. Feldmann, K. Leo, J. Shah, D.A.B. Miller, J.E. Cunningham, T. Meier, G. von Plessen, A. Schulze, P. Thomas, and S. Schmitt-Rink, Phys. Rev. B46:7252 (1992).

    ADS  Google Scholar 

  25. J. Feldmann, in: ‘Advances in Solid State Physics’, U. Rössler, ed., Vieweg, Braunschweig (1992).

    Google Scholar 

  26. K. Leo, P.H. Bolivar, F. Brüggemann, R. Schwedler, and K. Köhler, Solid State Commun. 84:943 (1992).

    Article  ADS  Google Scholar 

  27. G. von Plessen, J. Feldmann, E.O. Göbel, K.W. Goossen, D.A.B. Miller, and J.E. Cunningham, Appl. Phys. Lett., in press.

    Google Scholar 

  28. H.G. Roskos, M.C. Nuss, J. Shah, K. Leo, D.A.B. Miller, A.M. Fox, S. Schmitt-Rink, and K. Köhler, Phys. Rev. Lett. 68:2216 (1992).

    Article  ADS  Google Scholar 

  29. C. Waschke, H.G. Roskos, R. Schwedler, K. Leo, H. Kurz, and K. Köhler, Phys. Rev. Lett. 70:3319 (1993).

    Article  ADS  Google Scholar 

  30. D.A.B. Miller, D.S. Chemla, T.C. Damen, A.C. Gossard, W. Wiegmann, T.H. Wood, and C.A. Burrus, Phys. Rev. B32:1043 (1985).

    ADS  Google Scholar 

  31. A. Larsson, P.A. Andrekson, S.T. Eng, and A. Yariv, IEEE J. Quantum Electron. 24:787 (1988).

    Article  ADS  Google Scholar 

  32. P.J. Price, Appl. Phys. Lett. 62:289 (1993).

    Article  ADS  Google Scholar 

  33. J. Shah, in: ‘Optics of Semiconductor Nanostructures’, F. Henneberger, S. Schmitt-Rink, and E.O. Göbel, eds., Akademie-Verlag, Berlin (1993).

    Google Scholar 

  34. J.E. Avron, Annals of Physics 143:33 (1982).

    Article  ADS  Google Scholar 

  35. F. Bloch, Z. Phys. 52:555 (1928).

    ADS  MATH  Google Scholar 

  36. C. Kittel, in: ‘Quantum Theory of Solids’, Wiley, New York (1963).

    Google Scholar 

  37. J. Zak, in: ’solid State Physics’, H. Ehrenreich, F. Seitz, and D. Turnbull, eds., Academic, New York (1972).

    Google Scholar 

  38. A. Nenciu and G. Nenciu, Phys. Lett. 78:101 (1980).

    Article  Google Scholar 

  39. J.B. Krieger and G.J. Iafrate, Phys. Rev. B33:5494 (1986).

    ADS  Google Scholar 

  40. V.W. Houston, Phys. Rev. 57:184 (1940).

    Article  MathSciNet  ADS  Google Scholar 

  41. C. Zener, Proc. R. Soc. A145:523 (1934).

    ADS  Google Scholar 

  42. P. Roblin and M.W. Muller, Semicond. Sci. Technol. 1:218 (1986).

    Article  ADS  Google Scholar 

  43. G. Nenciu, Rev. Mod. Phys. 63:91 (1991).

    Article  ADS  Google Scholar 

  44. W. Franz, Z. Naturforschg. 13a:484 (1958).

    ADS  Google Scholar 

  45. L.V. Keldysh, Sov. Phys. JETP 34:788 (1958).

    Google Scholar 

  46. G.H. Wannier, Phys. Rev. B117:432 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  47. G.H. Wannier, Rev. Mod. Phys. 34:645 (1962).

    Article  MathSciNet  ADS  Google Scholar 

  48. J. Bleuse, G. Bastard, and P. Voisin, Phys. Rev. Lett. 60, 220 (1988).

    Article  ADS  Google Scholar 

  49. E.E. Mendez, F. Agullo-Rueda, and J.M. Hong, Phys. Rev. Lett. 60:2426 (1988).

    Article  ADS  Google Scholar 

  50. P. Voisin, J. Bleuse, C. Bouche, S. Gaillard, C. Alibert, and A. Regreny, Phys. Rev. Lett. 61:1639 (1988).

    Article  ADS  Google Scholar 

  51. I. Bar-Joseph, J.M. Kuo, R.F. Kopf, D.A.B. Miller, and D.S. Chemla, Appl. Phys. Lett. 55:340 (1989).

    Article  ADS  Google Scholar 

  52. H. Schneider, K. Fujiwara, H.T. Grahn, K. von Klitzing, and K. Ploog, Appl. Phys. Lett. 56:605 (1990).

    Article  ADS  Google Scholar 

  53. A.M. Fox, D.A.B. Miller, J.E. Cunningham, W.Y. Jan, C.Y.P. Chao, and S.L. Chuang, Phys. Rev. B46:15365 (1992).

    ADS  Google Scholar 

  54. E.E. Mendez and G. Bastard, Physics Today, 34 (June 1993).

    Google Scholar 

  55. F. Beltram, F. Capasso, D.L. Sivco, A.L. Hutchinson, S.N.G. Chu, and A.Y. Cho, Phys. Rev. Lett. 64:3167 (1990).

    Article  ADS  Google Scholar 

  56. D.E. Aspnes and A.A. Studna, Phys. Rev. B7:4605 (1973).

    ADS  Google Scholar 

  57. C. Coriasso, D. Campi, C. Cacciatore, C. Alibert, S. Gaillard, B. Lambert, and A. Regreny, Europhys. Lett. 16:591 (1991).

    Article  ADS  Google Scholar 

  58. J.A. Kash, R.G. Ulbrich, and J.C. Tsang, Solid State Electron. 32:1277 (1989).

    Article  ADS  Google Scholar 

  59. R. Tsu and G. Döhler, Phys. Rev. B12:680 (1975).

    ADS  Google Scholar 

  60. R. Ferreira and G. Bastard, Surf. Sci. 229:424 (1990).

    Article  ADS  Google Scholar 

  61. S.M. Zakharov and E.A. Manykin, Izv. Akad. Nauk SSSR 37:2171 (1973).

    Google Scholar 

  62. G. von Plessen and P. Thomas, Phys. Rev. B45:9185 (1992).

    ADS  Google Scholar 

  63. L. Allen and J.H. Eberly, in: ‘Optical Resonance and Two-Level Systems’, Dover Publications, New York (1975).

    Google Scholar 

  64. L. Schultheis, A. Honold, J. Kuhl, K. Köhler, and C.W. Tu, Phys. Rev. B34:9027 (1986).

    ADS  Google Scholar 

  65. A.M. Bouchard and M. Luban, Phys. Rev. B47:6815 (1993).

    ADS  Google Scholar 

  66. M.M. Dignam and J.E. Sipe, Phys. Rev. B43:4097 (1991).

    ADS  Google Scholar 

  67. M. Dignam, J.E. Sipe, and J. Shah, submitted for publication.

    Google Scholar 

  68. G. von Plessen, T. Meier, J. Feldmann, E.O. Göbel, P. Thomas, K. Goossen, D.A.B. Miller, and J.E. Cunningham, submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Feldmann, J. et al. (1994). Vertical Transport Studied by Sub-Picosecond Four-Wave Mixing Experiments. In: Phillips, R.T. (eds) Coherent Optical Interactions in Semiconductors. NATO ASI Series, vol 330. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9748-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9748-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9750-3

  • Online ISBN: 978-1-4757-9748-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics