Advertisement

Quantum Optics in Periodic Dielectric Structures

  • G. Kurizki
Conference paper

Abstract

The advent of 3D-periodic dielectric structures possessing photonic band gaps (PBGs) and the ability to incorporate defects in the structure, wherein localized high-Q modes are formed at PBG frequencies, should offer far greater control over (i) the spatial modulation of the field amplitude, and (ii) the spectral distribution of its mode density. We have been exploring the following novel quantum optical processes which rely on the “design” of the aforementioned field characteristics in PBG structures: (a) quantum states preparation via nonadiabatic periodic transitions, (b) pump-mode Fock-state generation, (c) lasing without inversion — atomic coherence by spontaneous decay, (d) two-atom interactions, and (e) near-resonant gap solitons and optical “excitons”.

Keywords

Photonic Crystal Photon Number Photonic Band Structure Bragg Structure Antisymmetric State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).CrossRefGoogle Scholar
  2. [2]
    S. John, Phys. Rev. Lett. 58, 2486 (1987);CrossRefGoogle Scholar
  3. S. John, Phys. Today 44 32 (1991).CrossRefGoogle Scholar
  4. [3]
    E. Yablonovitch, J. Opt. Soc. Am B 10, 283 (1993).Google Scholar
  5. [4]
    See Special Issues on Photonic Band Structre Materials: J Opt. Soc. Am. B10. No.2 (1993)(ed. C.M. Bowden, J.P. Dowling and H.O. Everitt); J.Mod.Opt 41 No.2 (1994) (ed. G. Kurizki and J.W. Haus).Google Scholar
  6. [5]
    B. Sherman, G. Kurizki, and A. Kadyshevitch, Phys. Rev. Lett. 69, 1927 (1992)Google Scholar
  7. G. Kurizki, B. Sherman and A. Kadyshevitch, J. Opt. Soc. Am. B 10, 346 (1993).CrossRefGoogle Scholar
  8. [6]
    B. Sherman, A. G. Kofman, and G. Kurizk, Appl.Phys.B (special issue on fundamental systems) 60, S99 (1995).Google Scholar
  9. [7]
    A. G. Kofman, G. Kurizki, and B. Sherman, J. Mod. Opt. 41, 353 (1994).CrossRefGoogle Scholar
  10. [8]
    B. Fain, Phys. Rev. A 37, 546 (1988).CrossRefGoogle Scholar
  11. [9]
    S. John and J. Wang, Phys. Rev. B 43, 12774 (1991).Google Scholar
  12. [10]
    M. 0. Scully, S. Zhu, and A. Gavrielides, Phys. Rev. Lett. 62, 2813 (1989).Google Scholar
  13. [11]
    A. G. Kofman, G. Kurizki, and V. Yudson, Phys.Rev.A, (submitted).Google Scholar
  14. [12]
    A. G. Kofman and G. Kurizki, (preprint).Google Scholar
  15. [13]
    S. L. McCall and E. L. Hahn. Phys.Rev 183, 457 (1969).CrossRefGoogle Scholar
  16. [14]
    A. Maimistov, A. Basharov, and S. Elyutin, Phys.Rep. 191, 2 (1990).CrossRefGoogle Scholar
  17. [15]
    B. I. Mantsyzov and R. N. Kuz’min, Soy. Phys. JETP 64, 37 (1986).Google Scholar
  18. [16]
    T. I. Lakoba, Phys. Lett. A 196, 55 (1994).CrossRefGoogle Scholar
  19. [17]
    R. Inguva and C. M. Bowden, Phys.Rev.A 41, 1670 (1990).CrossRefGoogle Scholar
  20. [18]
    M. I. Shaw and B. W. Shore, DOSA B 8, 1127 (1991).Google Scholar
  21. [19]
    A. Kozhekin and G. Kurizki, Physical Review Letters 74, 5020 (1995).CrossRefGoogle Scholar
  22. [20]
    Z. Cheng and G. Kurizki, Phys.Rev.Lett (submitted); also these proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • G. Kurizki
    • 1
  1. 1.Chemical Physics DepartmentWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations