Advertisement

Stochastic Schrödinger Equations: What They Mean and What They Can Do

  • H. J. Carmichael
Conference paper

Abstract

The quantum mechanics we use in quantum optics is rather different from that taught in the standard quantum mechanics course. It is, of course, the same quantum mechanics; but the emphasis is different. Two observations illustrate what I mean. First, quantum optics emphasizes dissipative systems, open systems. The most notable of these is the laser, but a rather long list could be given which would include close relatives such as the parametric oscillator and a litany of systems involving resonance fluorescence. Second, quantum optics has always had close ties to the issue of quantum measurement. This theme goes back to the beginnings of the subject and Glauber’s quantum theory of coherence, which is founded on the multi-coincidence rates measured in photoelectric detection.

Keywords

Atomic Beam Local Oscillator Rabi Oscillation Dynamical Rule Bare State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Pearle, Reduction of the state vector by a nonlinear Schrödinger equation, Phys. Rev. D 13: 857 (1976).MathSciNetGoogle Scholar
  2. 2.
    G. C. Ghirardi, A. Rimini, and T. Weber, Unified dynamics for microscopic and macroscopic systems, Phys. Rev. D 34: 470 (1986).MathSciNetMATHGoogle Scholar
  3. 3.
    G. C. Hegerfeldt and T. S. Wilser, Ensemble or individual system, collapse or no collapse: a description of a single radiating atom, in: “Classical and Quantum Systems: Foundations and Symmetries,” H. D. Doebner, W. Scherer and F. Schroeck, Jr., eds., World Scientific, Singapore (1991).Google Scholar
  4. 4.
    J. Dalibard, Y. Castin and K. Molmer, A wavefunction approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68: 580 (1992).CrossRefGoogle Scholar
  5. 5.
    H. J. Carmichael. “An Open Systems Approach to Quantum Optics,” Springer, Berlin (1993).Google Scholar
  6. 6.
    B. R. Mollow, Pure-state analysis of resonant light scattering: Radiative damping, saturation, and multiphoton effects, Phy. Rev. A 12: 1919 (1975).Google Scholar
  7. 7.
    C. Cohen-Tannoudji and J. Dalibard, Single-atom laser spectroscopy. Looking for dark periods in fluorescence light, Europhys. Lett. 1: 9 (1986).CrossRefGoogle Scholar
  8. 8.
    P. Zoller, M. Marte and D. F. Walls, Quantum jumps in atomic systems, Phys. Rev. A 35: 198 (1987).Google Scholar
  9. 9.
    M. D. Srinivas and E. B. Davies, Photon counting probabilities in quantum optics, Optica Acta 28: 981 (1981).MathSciNetCrossRefGoogle Scholar
  10. 10.
    H. J. Carmichael, S. Singh, R. Vyas and P. R. Rice, Photoelectron waiting times and atomic state reduction in resonance fluorescence, Phys. Rev. A 39: 1200 (1989).Google Scholar
  11. 11.
    H. A. Kramers, The law of dispersion and Bohr’s theory of spectra, Nature 113: 673 (1924).CrossRefGoogle Scholar
  12. 12.
    H. A. Kramers, reply to G. Breit, The quantum theory of dispersion, Nature 114: 310 (1924).CrossRefGoogle Scholar
  13. 13.
    H. A. Kramers and W. Heisenberg, On the dispersion of radiation by atoms, Z. Phys. 31: 681 (1925). English translation in: Sources of Quantum Mechanics,” B. L. van der Waerden, ed., North Holland, Amsterdam (1967).Google Scholar
  14. 14.
    W. Heisenberg, Quantum-theoretical re-interpretation of kinematic and mechanical relations, Z. Phys. 33: 879 (1925). English translation in: “ Sources of Quantum Mechanics,” B. L. van der Waerden, ed., North Holland, Amsterdam (1967).Google Scholar
  15. 15.
    P. Alsing and H. J. Carmichael, Spontaneous dressed-state polarization of a coupled atom and cavity mode, Quantum Opt. 3: 13 (1991).CrossRefGoogle Scholar
  16. 16.
    L. Tian and H. J. Carmichael, Quantum trajectory simulations of the two-state behavior of an optical cavity containing one atom, Phys. Rev. A 46: R6801 (1992).Google Scholar
  17. 17.
    H. M. Wiseman and G. J. Milburn, The interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere, Phys. Rev. A 47: 1652 (1993).Google Scholar
  18. 18.
    G. Ghirardi and A. Rimini, Old and new ideas in the theory of quantum measurement, in: “Sixty-Two Years of Uncertainty,” A. Miller, ed., Plenum, New York (1990).Google Scholar
  19. 19.
    L. Diósi, J. Halliwell, and I. C. Percival, Decoherent histories and quantum state diffusion, Phys. Rev. Lett. 74: 203 (1995).CrossRefMATHGoogle Scholar
  20. 20.
    N. Gisin and I. C. Percival, The quantum state diffusion model applied to open systems, J. Phys. A 25: 5677 (1992).MathSciNetMATHGoogle Scholar
  21. 21.
    V. P. Belavkin and C. Bendjaballah, Continuous measurements of quantum phase, Quantum Opt. 6: 169 (1994).CrossRefGoogle Scholar
  22. 22.
    A. Barchielli and V. P. Belavkin, Measurements continuous in time and a posteriori states in quantum mechanics, J. Phys. A 24: 1495 (1991).MathSciNetGoogle Scholar
  23. 23.
    P. Goetsch and R. Graham, Linear stochastic wave equations for continuously measured quantum systems, Phys. Rev. A 50: 5242 (1994).Google Scholar
  24. 24.
    H. J. Carmichael, P. Kochan and L. Tian, Coherent states and open quantum systems: A comment on the Stern-Gerlach experiment and Schrödinger’s cat, in: “Coherent State: Past, Present, and Future,” D. H. Feng, J. R. Klauder and M. R. Strayer, eds., World Scientific, Singapore (1994).Google Scholar
  25. 25.
    H. J. Carmichael, Decoherence: Is dissipation all it takes?, in: “Quantum Optics VI,” D. H. Walls and J. H. Harvey, eds., Springer, Berlin (1994).Google Scholar
  26. 26.
    P. Kochan, H. J. Carmichael, P. R. Morrow and M. G. Raizen, Mutual coherence and interference in resonance fluorescence, Phys. Rev. Lett. 75: 45 (1995).CrossRefGoogle Scholar
  27. 27.
    P. Marte, R. Dum, R. Taïeb, P. D. Lett and P. Zoller, Quantum wave function simulation of the resonance fluorescence spectrum from one-dimensional optical molasses, Phys. Rev. Lett. 71: 1335 (1993).CrossRefGoogle Scholar
  28. 28.
    Y. Castin and K. Molmer, Monte Carlo wave-function analysis of 3D optical molasses, Phys. Rev. Lett. 74: 3772 (1995).CrossRefGoogle Scholar
  29. 29.
    R. J. Thompson, G. Rempe and H. J. Kimble, Observation of normal-mode splitting for an atom in an optical cavity, Phys. Rev. Lett. 68: 1132 (1992).CrossRefGoogle Scholar
  30. 30.
    R. J. Thompson, Cavity quantum electrodynamics in the optical domain: Structure and dynamics in the strong coupling regime, Ph.D. Dissertation, The University of Texas at Austin (1994).Google Scholar
  31. 31.
    P. Kochan, Quantum trajectory simulations of cavity QED systems, Ph.D. Dissertation, University of Oregon (1995).Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • H. J. Carmichael
    • 1
  1. 1.Department of Physics, Chemical Physics Institute and Institute of Theoretical ScienceUniversity of OregonEugeneUSA

Personalised recommendations