Quantum Trigonometry of the Noh-Fougères-Mandel Experiments

  • K. Wódkiewicz
Conference paper


We investigate the quantum trigonometry of a single mode of a harmonic oscillator using the concept of the phase propensity and the associated operational operators. This approach is motivated by an operational approach to phase fluctuations presented in the recent measurements of the phase properties of optical fields by Noh, Fougères, and Mandel (NFM).


Operational Operator Wigner Function Optical Field Modify Bessel Function Phasor Basis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Wódkiewicz, Phys. Rev. Lett. 52, (1984);Google Scholar
  2. D. Burak and K. Wódkiewicz Phys. Rev A 46, 2744 (1992)CrossRefGoogle Scholar
  3. 2.
    J. W. Noh, A. Fougères, and L. Mandel, Phys. Rev. A 45, 424; Phys. Rev. A 46, 2840 (1992).CrossRefGoogle Scholar
  4. 3.
    B.-G. Englert, K. Wódkiewicz, Phys. Rev A 51, R2661 (1995).CrossRefGoogle Scholar
  5. 4.
    A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).CrossRefMATHGoogle Scholar
  6. 5.
    P. Riegler and K. Wódkiewicz, Phys. Rev. A 49, 1387 (1994).CrossRefGoogle Scholar
  7. 6.
    B.-G. Englert, K. Wódkiewicz and P. Riegler Phys. Rev A in print.Google Scholar
  8. 7.
    M. Freyberger and W. Schleich, Phys. Rev. A 47, R30 (1993);CrossRefGoogle Scholar
  9. M. Freyberger, K. Vogel, and W. Schleich, Phys. Lett. A 176, 41 (1993).CrossRefGoogle Scholar
  10. 8.
    U. Leonhardt and H. Paul, Phys. Rev. A 47, R2460 (1993).CrossRefGoogle Scholar
  11. 9.
    J. Bergou and B.-G. Englert, Ann. Phys. (NY) 209, 479 (1991).MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • K. Wódkiewicz
    • 1
  1. 1.Center for Advanced StudiesUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations