Advertisement

Vacuum Fluctuations and Accelerated Frames

  • Marc-Thierry Jaekel
  • Serge Reynaud
Conference paper

Abstract

Quantum fields carry energy and momentum and exert radiation pressure forces upon mirrors 1. As known for a long time 2, a mirror immersed in thermal fields experiences a mean dissipative force proportional to its velocity as well as random force fluctuations. The dissipative and fluctuating forces are connected through fluctuation-dissipation relations 3, and they induce a Brownian motion for the mirror’s position. The force fluctuations 4, the dissipative motional force 5 as well as the associated random motion 6 persist for mirrors immersed in vacuum fluctuations, that is at the zero temperature limit of thermal fluctuations.

Keywords

Conformal Invariance Inertial Frame Motional Force Casimir Force Casimir Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Barton, contribution to this volume; G. Barton, in “Cavity Quantum Electrodynamics” (Supplement: Advances in Atomic, Molecular and Optical Physics), P. Berman ed., (Academic Press, 1994 ).Google Scholar
  2. 2.
    A. Einstein, Physikalische Zeitschrift 10 185 (1909); Physikalische Zeitschrift 18 121 (1917).Google Scholar
  3. 3.
    H.B. Callen and T.A. Welton, Physical Review 83 34 (1951);MathSciNetCrossRefMATHGoogle Scholar
  4. M.T. Jaekel and S. Reynaud, Physics Letters A172 319 (1993).CrossRefGoogle Scholar
  5. 4.
    M.T. Jaekel and S. Reynaud, Quantum Optics 4 39 (1992).MathSciNetCrossRefGoogle Scholar
  6. 5.
    S.A. Fulling and P.C.W. Davies, Proceedings Royal Society London A348 393 (1976);MathSciNetCrossRefMATHGoogle Scholar
  7. G. Barton and C. Eberlein Annals of Physics 227 222 (1993).CrossRefGoogle Scholar
  8. 6.
    M.T. Jaekel and S. Reynaud, Journal de Physique I-3 1 (1993).Google Scholar
  9. 7.
    H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51 793 (1948);MATHGoogle Scholar
  10. G. Plunien, B. Müller and W. Greiner, Physics Reports 134 87 (1986).MathSciNetCrossRefGoogle Scholar
  11. 8.
    L.S. Brown and G.J. Maclay, Physics Review 184 1272 (1969).CrossRefGoogle Scholar
  12. 9.
    M.T. Jaekel and S. Reynaud, Journal de Physique I-1 1395 (1991).Google Scholar
  13. 10.
    M.T. Jaekel and S. Reynaud, Journal de Physique I-2 149 (1992).Google Scholar
  14. 11.
    W.G. Unruh, Physical Review D14 870 (1976);Google Scholar
  15. N.D. Birrell and P.C.W. Davies, “Quantum fields in curved space” (Cambridge, 1982), and references therein.Google Scholar
  16. 12.
    P.A. Maïa Neto, Journal of Physics A27 2167 (1994).Google Scholar
  17. 13.
    M.T. Jaekel and S. Reynaud, Physics Letters A167 227 (1992).CrossRefGoogle Scholar
  18. 14.
    M.T. Jaekel and S. Reynaud, Journal de Physique 1–3 1093 (1993).Google Scholar
  19. 15.
    A. Einstein, Annalen der Physik 18 639 (1905) [reprinted in english in The Principle of Relativity (Dover Publications, 1952)]; Annalen der Physik 20 627 (1906).MATHGoogle Scholar
  20. 16.
    A. Einstein, Jahrb. Radioakt. Elektron. 4 411 (1907), 5 98 (1908) [translated in english and commented by H.M. Schwartz, American Journal of Physics 45 512, 811, 899 (1977)].Google Scholar
  21. 17.
    M.T. Jaekel and S. Reynaud, Quantum and SemiClassical Optics to appear (1995).Google Scholar
  22. 18.
    W. Rindler, “Essential Relativity” (Springer, 2nd ed., 1977 );Google Scholar
  23. E.A. Desloge and R.J. Philpott, American Journal of Physics 55 252 (1987).MathSciNetCrossRefGoogle Scholar
  24. 19.
    E. Cunningham, Proceedings of the London Mathematical Society 8 77 (1909);MathSciNetGoogle Scholar
  25. H. Bateman, Proceedings of the London Mathematical Society 8 223 (1909).MathSciNetGoogle Scholar
  26. 20.
    M. Born, Annalen der Physik 30 1 (1909);CrossRefMATHGoogle Scholar
  27. W. Pauli, “Relativitätstheorie” Encyklopädie des matematischen Wissenschaften vol. V19 (B.G. Teubner Leipzig, 1921) [“Theory of Relativity” (Pergamon Press 1958; Dover, 1981)].Google Scholar
  28. 21.
    E.L. Hill, Physical Review 67 358 (1945), Physical Review 72 143 (1947);CrossRefMATHGoogle Scholar
  29. T. Fulton, F. Rohrlich and L. Witten, Nuovo Cimento 26 653 (1962).MathSciNetGoogle Scholar
  30. 22.
    T. Fulton, F. Rohrlich and L. Witten, Reviews of Modern Physics 34 442 (1962) and references therein.Google Scholar
  31. 23.
    B. Mashhoon and L.P. Grishchuk, Astrophysical Journal 236 990 (1980).CrossRefGoogle Scholar
  32. 24.
    P.A.M. Dirac, Annals of Mathematics 37 429 (1936);MathSciNetCrossRefGoogle Scholar
  33. H.J. Bhabha, Proceedings of the Cambridge Philosophical Society 32 622 (1936).CrossRefGoogle Scholar
  34. 25.
    S.W. Hawking, Communications Mathematical Physics 43 199 (1975).CrossRefGoogle Scholar
  35. 26.
    Ya.B. Zeldovich and A.A. Starobinskii, Zh. Eksp. Teor. Fiz. 61 216 (1971) [Soviet Physics JETP 34 1159 (1972)]; Pisma Zh. Eksp. Teor. Fiz. 26 373 (1977) [Soviet Physics JETP Letters 26 252 (1977)1;Google Scholar
  36. M.T. Jaekel and S. Reynaud, Annalen der Physik 4 68 (1995) and references therein.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Marc-Thierry Jaekel
    • 1
  • Serge Reynaud
    • 2
  1. 1.Laboratoire de Physique Théorique (CNRS, ENS, UPS)Paris Cedex 05France
  2. 2.Laboratoire Kastler Brossel (UPMC, ENS, CNRS)Paris Cedex 05France

Personalised recommendations