Skip to main content

Photon Scattering from Atoms in an Atom Interferometer: Coherence Lost and Regained

  • Conference paper
Coherence and Quantum Optics VII

Abstract

Loss of coherence in one system A that results from entanglement or correlation with a reservoir M has long been an important issue in quantum mechanics. It is of special interest both because of the difficulty of incorporating the resulting coherence loss into Schrödinger’s equation describing system A and because of its relevance to understanding the measurement process in particular and the connection between quantum mechanics and classical mechanics in general [1]. We discuss experiments here in which this entanglement results from the elastic scattering of a photon from an atom initially in a state with extended spatial coherence inside an atom interferometer. The major issues addressed are the degree of loss of coherence (ie. contrast of the interference fringes), both when the outgoing photon is ignored (ie. treated as a reservoir) and when information about its final state is inferred from the final momentum of the atom. This inference is exact since momentum (and energy too) is conserved and the initial momentum of both photon and atom are well specified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A. Wheeler and W.H. Zurek. Quantum Theory and Measurement ( Princeton University Press, Princeton, 1983 ).

    Google Scholar 

  2. N. Bohr in A. Einstein: Philosopher - Scientist edited by P. A. Schilpp p. 200–241 (Library of Living Philosophers, Evaston, 1949); a detailed analysis is given in: W. Wooters and W. Zurek, Phys. Rev. D 19 473 (1979).

    Google Scholar 

  3. R. Feynman, R. Leighton and M. Sands. The Feynman Lectures on Physics (Addison-Wesley, Reading, MA, 1965)vol. 3, p. 5–7

    Google Scholar 

  4. A. Zeilinger. in New Techniques an Ideas in Quantum Mechanics, p. 164, edited by ( New York Acad. Science, New York, 1986 ).

    Google Scholar 

  5. T. Sleator, O. Carnal, T. Pfau, A. Faulstich, H. Takuma and J. Mlynek. in Laser Spectroscopy X, p. 264, edited by M. Dulcoy, E. Giacobino and G. Camy ( World Scientific, Singapore, 1991 ).

    Google Scholar 

  6. S.M. Tan and D.F. Walls, Phys. Rev. A 47, 4663 (1993)

    Article  Google Scholar 

  7. F. Riehle, A. Witte, T. Kisters and J. Helmcke, Appl. Phys. B 54, 333 (1992).

    Article  Google Scholar 

  8. U. Sterr, K. Sengstock, J.H. Muller, D. Bettermann and W. Ertmer, Appl. Phys. B 54, 341 (1992).

    Article  Google Scholar 

  9. J.F. Clauser and S. Li, Phys. Rev. A 50, 2430 (1994).

    Article  Google Scholar 

  10. M.S. Chapman, C.R. Ekstrom, T.D. Hammond, R.A. Rubenstein, J. Schmiedmayer, S. Wehinger and D.E. Pritchard, in press.

    Google Scholar 

  11. D.W. Keith, C.R. Ekstrom, Q.A. Turchette and D.E. Pritchard, Phys. Rev. Lett. 66, 2693 (1991).

    Article  Google Scholar 

  12. J. Schmiedmayer, M.S. Chapman, C.R. Ekstrom, T.D. Hammond, S. Wehinger and D.E. Pritchard, Phys. Rev. Lett. 74, 1043 (1995).

    Article  Google Scholar 

  13. C. Bordé, Phys. Lett. A 140, 10 (1989)

    Google Scholar 

  14. P. Storey and C. Cohen-Tannoudji, J. Phys. II France 4, 1999 (1994)

    Google Scholar 

  15. A. Stern, Y. Aharonov and Y. Imry, Phys. Rev. A 41, 3436 (1990)

    Article  Google Scholar 

  16. L. Mandel, J. Optics (Paris) 10, 51 (1979)

    Article  Google Scholar 

  17. T. Pfau, S. Spalter, C. Kurstsiefer, C.R. Ekstrom and J. Mlynek, Phys. Rev. Lett. 29, 1223 (1994)

    Article  Google Scholar 

  18. P.L. Gould, P.J. Martin, G.A. Ruff, R.E. Stoner, J.L. Picque and D.E. Pritchard, Phys. Rev. A 43, 585 (1991)

    Article  Google Scholar 

  19. B.G. Oldaker, P.J. Martin, P.L. Gould, M. Xiao and D.E. Pritchard, Phys. Rev. Lett 65, 1555 (1990)

    Article  Google Scholar 

  20. Because of the narrow acceptance of the detector for this correlation experiment, C(laser on) # C(laser oft) even when d = 0.

    Google Scholar 

  21. N.F. Ramsey. Molecular Beams (Oxford University Press, Oxford, 1985 )

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this paper

Cite this paper

Pritchard, D.E. et al. (1996). Photon Scattering from Atoms in an Atom Interferometer: Coherence Lost and Regained. In: Eberly, J.H., Mandel, L., Wolf, E. (eds) Coherence and Quantum Optics VII. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9742-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9742-8_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9744-2

  • Online ISBN: 978-1-4757-9742-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics