Advertisement

Reconstruction of Wigner Functions on Different Observation Levels

  • V. Bužek
Conference paper

Abstract

The Wigner function [1] of the quantum-mechanical state which is described by the density operator ρ can, in principle, be reconstructed either via a set of the single observable measurements (the so called optical homodyne tomography [2,3]) or via a simultaneous measurement of two non-commuting observables (see for instance a concept of propensities as discussed by Wódkiewicz [4] and others [5,6]) The completely reconstructed Wigner function, or equivalently, the reconstructed density operator, contains information about all independent moments of the system operators, i.e., in the case of the quantum harmonic oscillator the knowledge of the Wigner function is equivalent to the knowledge of all moments 〈(â†) m â n 〉 of the creation ( â † ) and annihilation ( â ) operators.

Keywords

Pure State Density Operator Wigner Function Photon Number Observation Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.P.Wigner, Phys. Rev. 40, 749 (1932); see also M.Hillery, R.F.O’Connell, M.O.Scully, and E.P.Wigner, Phys. Rep. 106, 121 (1984).Google Scholar
  2. [2]
    K.Vogel and H.Risken, Phys. Rev. A 40, 2847 (1989).CrossRefGoogle Scholar
  3. [3]
    D.T.Smithey, M.Beck, M.G.Rayiuer and A.Faridani, Phys. Rev. Lett.70, 1244 (1993).Google Scholar
  4. [4]
    K.Wódkiewicz, Phys. Rev. Lett. 52, 1064 (1984).MathSciNetCrossRefGoogle Scholar
  5. [5]
    E.Arthurs and.J.L.Kelly, Jr., Bell. Syst. Tech. J. 44, 725 (1965); see also the review article S.Stenholm, Ann. Phys. (N.Y.) 218, 233 (1992).CrossRefGoogle Scholar
  6. [6]
    V.Buzek, C.H.Keitel, and P.L.Knight, Phys. Rev. A 51, 2575 (1995).CrossRefGoogle Scholar
  7. [7]
    E. Fick and G. Saueranann, “The Quantum Statistics of Dynamic Processes”, ( Springer Verlag, Berlin, 1990 ).CrossRefGoogle Scholar
  8. [8]
    E.T. Jaynes, Phys. Rev., 106, 620; ibid. 108, 171 (1957); Am. J. Phys., 31, 66 (1963); E.T. Jaynes, “Information theory and statistical mechanics”, in 1962’ Brandeis Lectures, Vol.’1, ed. K.W. Ford (Benjamin, Inc. New York, 1963 ), p. 181.Google Scholar
  9. [9]
    K.E.Cahill and R.J.Glauber, Phys.Rev.,177, 1857 (1969); 177, 1882 (1969).Google Scholar
  10. [10]
    J.von Neumann, “Mathematical Foundations of Quantum Mechanics” (Princeton University Press, Princeton, 1955 ).Google Scholar
  11. [11]
    C.W.Gardiner, “Quantum Noise” ( Springer-Verlag, Berlin, 1991 ).CrossRefGoogle Scholar
  12. [12]
    C.E.Shannon, Bell. Sys. Techn. J. 27, 379 (1948); ibid. 27, 623 (1948).Google Scholar
  13. [13]
    R..Loudon and P.L.Knight;.1. Mod. Opt. 34, 709 (1987).CrossRefGoogle Scholar
  14. [14.
    V.Buïek, G.Adam, and G.Drohnÿ, “Quantum-state reconstruction and detection of quantum coherences on different observation levels”, submitted for publication.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • V. Bužek
    • 1
    • 2
  1. 1.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  2. 2.Institut für Theoretische Physik E136TU WienViennaAustria

Personalised recommendations