Brain Structure and Cognitive Function

  • Lee Willerman
  • Robert Schultz
  • J. N. Rutledge
  • Erin D. Bigler
Part of the Perspectives on Individual Differences book series (PIDF)


Only the most hidebound or ideologically driven can still maintain that genetic variation has a negligible impact on general mental ability (e.g., Bouchard, Lykken, McGue, Segal, & Tellegen, 1990; Plomin, DeFries, & McClearn, 1990). Nevertheless, the specific mechanisms by which genes shape and are manifested in brain structure and function have remained elusive. Impediments to progress have included the absence of good animal models and the multifactorial nature of intelligence. Multifactorial inheritance implies multiple genetic and environmental influences so that no single gene, whether regulatory or structural, can dominate IQ variance in the normal range. Identifying individual genes with only modest effects on intellectual function is daunting, but as new techniques from molecular biology become applicable to human intellectual variation (McClearn, Plomin, Gora-Maslak, & Crabbe, 1991), rapid progress can be expected. Until now, most human behavior geneticists necessarily have relied on low-tech methods like twin and adoption designs for untangling genetic and environmental influences on intelligence. However, even these low-tech procedures have provided a remarkably convergent body of findings over the years.


Left Hemisphere Brain Size Nerve Conduction Velocity Asymmetry Index Hydrogen Proton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreasen, N. C., Flaum, M., Swayze, V., O’Leary, D. S., Alliger, R., Cohen, G., Ehrhardt, J., & Yuh, W. T. C. (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150, 130–134.PubMedGoogle Scholar
  2. Ankney, C. D. (1992). Sex differences in relative brain size: The mismeasure of women, too? Intelligence, 16, 329–336.CrossRefGoogle Scholar
  3. Barrett, P. T., & Eysenck, H. J. (1992). Brain evoked potentials and intelligence: The Hendrickson paradigm. Intelligence, 16, 361–381.CrossRefGoogle Scholar
  4. Beals, K. L., Smith, C. L., & Dodd, S. M. (1984). Brain size, cranial morphology, climate, and time machines. Current Anthropology, 25, 301–330.CrossRefGoogle Scholar
  5. Bouchard, T. J. Jr., Lykken, D. T., McGue, M., Segal, H. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota study of twins reared apart. Science, 250, 223–228.PubMedCrossRefGoogle Scholar
  6. Cameron, I. L., Ord, V. A., & Fullerton, G. D. (1984). Characterization of proton NMR relaxation times in normal and pathological tissues by correlation with other tissue parameters. Magnetic Resonance Imaging, 2, 97–106.PubMedCrossRefGoogle Scholar
  7. Chipuer, H. M., Rovine, M. J., & Plomin, R. (1990). LISREL modeling: Genetic and environmental influences on IQ revisited. Intelligence, 14, 11–29.CrossRefGoogle Scholar
  8. Coleman, P. D., & Flood, D. G. (1987). Neuron numbers and dendritic extent in normal aging and Alzheimer’s disease. Neurobiology of Aging, 8, 521–545.PubMedCrossRefGoogle Scholar
  9. Deacon, T. W. (1988). Human brain evolution. II: Embryology and brain allometry. In H. J. Jerison and I. Jerison (Eds.), Intelligence and evolutionary biology (pp. 363–381 ). New York: Springer-Verlag.CrossRefGoogle Scholar
  10. Dekaban, A. S., & Sadowsky, D. (1978). Changes in brain weights during the span of human life. Annals of Neurology, 4, 345–356.PubMedCrossRefGoogle Scholar
  11. Dobbing, J., & Sands, J. (1973). Quantitative growth and development of human brain. Archives of Diseases in Childhood, 48, 757–767.CrossRefGoogle Scholar
  12. Fineberg, I. (1987). Adolescence and mental illness. Science, 236, 507.Google Scholar
  13. Gazzaniga, M. S. (1989). Organization of the human brain. Science, 245, 947–952.PubMedCrossRefGoogle Scholar
  14. Geschwind, N. (1979). Specializations of the human brain. Scientific American, 241, 180199.Google Scholar
  15. Glassman, R. B. (1987). An hypothesis about redundancy and reliability in the brains of higher species: Analogies with genes, internal organs, and engineering systems. Neuroscience and Biobehavioral Reviews, 11, 275–285.PubMedCrossRefGoogle Scholar
  16. Gould, S. J. (1981). The mismeasure of man. New York: Norton.Google Scholar
  17. Guilford, J. P., & Fruchter, B. (1973). Fundamental statistics in psychology and education. New York: McGraw-Hill.Google Scholar
  18. Gur, R. C., Mozley, P. D., Resnick, S. M., Gottlieb, G. L., Kohn, M., Zimmerman, R., Herman, G., Atlas, S., Grossman, R., Berretta, D., Erwin, R., & Gur, R. E. (1991). Gender differences in age effect on brain atrophy measured by magnetic resonance imaging. Proceedings National Academy of Sciences, USA, 88, 2845–2849.CrossRefGoogle Scholar
  19. Haug, H. (1987). Brain sizes, surfaces, and neuronal sizes of the cortex cerebri: A stereo-logical investigation of man and his variability and a comparison with some species of mammals (primates, whales, marsupials, insectivores, and one elephant). American Journal of Anatomy, 180, 126–142.PubMedCrossRefGoogle Scholar
  20. Ho, K., Roessman, U., Straumfjord, J. V., & Monroe, G. (1980). Analysis of brain weight. II. Archives of Pathology and Laboratory Medicine, 104, 640–645.PubMedGoogle Scholar
  21. Ho, K., Gwozdz, J. T., Hause, L. L., & Antuono, P. G. (1992). Correlation of neuronal cell body size in motor cortex and hippocampus with body height, body weight, and axonal length. International Journal of Neuroscience, 65, 147–153.PubMedCrossRefGoogle Scholar
  22. Hofman, M. A. (1989). On the evolution and geometry of the brain in mammals. Progress in Neurobiology, 32, 137–158.PubMedCrossRefGoogle Scholar
  23. Holland, B. A., Haas, D. K., Norman, D., Brant-Zawadzki, M., & Newton, T. H. (1986).Google Scholar
  24. MRI of normal brain maturation. American Journal of Neuroradiology, 7,201–208.Google Scholar
  25. Inglis, J., & Lawson, J. S. (1982). A meta-analysis of sex differences in the effects of unilateral brain damage on intelligence test results. Canadian Journal of Psychology, 36, 670–683.PubMedCrossRefGoogle Scholar
  26. Jensen, A. R., & Sinha, S. N. (1993). Physical correlates of human intelligence. In P. A. Vernon (Ed.), Biological approaches to the study of human intelligence. Norwood, NJ: Ablex.Google Scholar
  27. Jerison, H. J. (1973). Evolution of the brain and intelligence. New York: Academic Press.Google Scholar
  28. Jerison, H. J. (1988). The evolutionary biology of intelligence: Afterthoughts. In H. J.Jerison and I. Jerison (Eds.), Intelligence and evolutionary biology (pp. 447–466 ). New York: Springer-Verlag.CrossRefGoogle Scholar
  29. Jernigan, T. L., Hesselink, J. R., Sowell, E., & Tallal, P. A. (1991). Cerebral structure on magnetic resonance imagining in language-and learning impaired children. Archives of Neurology, 48, 539–545.PubMedCrossRefGoogle Scholar
  30. Jernigan, T. L., & Tallal, P. A. (1990). Late childhood changes in brain morphology observable with MRI. Developmental Medicine and Child Neurology, 32, 379–385.PubMedCrossRefGoogle Scholar
  31. Kimura, D. (1987). Are men’s and women’s brains really different? Canadian Psychology, 28, 133–147.CrossRefGoogle Scholar
  32. Koenig, S. H. (1991). Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magnetic Resonance in Medicine, 20, 285–291.PubMedCrossRefGoogle Scholar
  33. Konner, M. (1991). Universals of behavioral development in relation to brain myelination. In K. R. Gibson and A. C. Petersen (Eds.), Brain maturation and cognitive development (pp. 181–223 ). New York: Aldine de Gruyter.Google Scholar
  34. Kranzler, J. H., & Jensen, A. R. (1991). Unitary g: Unquestioned postulate or empirical fact? Intelligence, 15, 437–448.CrossRefGoogle Scholar
  35. Lee, A., & Pearson, K. (1901). Data for the problem of evolution in man. VI. A first study of the correlation of the human skull. Transactions of the Royal Society of London, 196A, 225–264.CrossRefGoogle Scholar
  36. Loehlin, J. C., Horn, J. M., & Willerman, L. (1989). Modeling IQ change: Evidence from the Texas Adoption Project. Child Development, 60, 993–1004.PubMedCrossRefGoogle Scholar
  37. Lynn, R. (1990). New evidence on brain size and intelligence: A comment on Rushton and Cain and Vanderwolf. Personality and Individual Differences, 11, 795–797.CrossRefGoogle Scholar
  38. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings Royal Society of London, 207, 187–217.CrossRefGoogle Scholar
  39. McClearn, G. E., Plomin, R., Gora-Maslak, G., & Crabbe, J. C. (1991). The gene chase in behavioral science. Psychological Science, 2, 222–229.CrossRefGoogle Scholar
  40. Peters, M. (1991). Sex differences in human brain size and the general meaning of differences in brain size. Canadian Journal of Psychology, 45, 507–522.PubMedCrossRefGoogle Scholar
  41. Plomin, R., DeFries, J. C., & McClearn, G. E. (1990). Behavioral genetics: A primer ( 2nd ed ). New York: W. H. Freeman.Google Scholar
  42. Rakic, P. (1988). Specification of cerebral cortical areas. Science, 241, 170–176.PubMedCrossRefGoogle Scholar
  43. Raven, J., & Court, J. H. (1989). Manual for Raven’s Progressive Matrices and vocabulary scales: Research Supplement No. 4. London: H. K. Lewis.Google Scholar
  44. Raz, N., Millman, D., & Sarpel, G. (1990). Cerebral correlates of cognitive aging: Gray-white matter differentiation in the medial temporal lobes, and fluid versus crystallized abilities. Psychobiology, 18, 475–481.Google Scholar
  45. Reed, T. E., & Jensen, A. R. (1991). Arm nerve conduction velocity (NCV), brain NCV, reaction time, and intelligence. Intelligence, 15, 33–47.CrossRefGoogle Scholar
  46. Reed, T. E., & Jensen, A. R. (1992). Conduction velocity in a brain nerve pathway of normal adults correlates with intelligence level. Intelligence, 16, 259–272.CrossRefGoogle Scholar
  47. Rogers, S. L. (1984). The human skull. Springfield, IL: Thomas.Google Scholar
  48. Rushton, J. P. (1990). Race, brain size and intelligence: A rejoinder to Cain and Vanderwolf. Personality and Individual Differences, 11, 785–794.CrossRefGoogle Scholar
  49. Salthouse, T. A. (1991). Mediation of adult age differences in cognition by reductions in working memory and speed of processing. Psychological Science, 2, 179–183.CrossRefGoogle Scholar
  50. Sattler, J. M. (1988). Assessment of children. San Diego, CA: Jerome M. Sattler.Google Scholar
  51. Schultz, R. T. (1991). The relationship between intelligence and gray–white matter image contrast: A MRI study of healthy college students. Unpublished Doctoral Dissertation, University of Texas at Austin.Google Scholar
  52. Schultz, R., Willerman, L., Rutledge, J. N., & Bigler, E. (1989). MRI contrast and intelligence. Archives of Clinical Neuropsychology, 5, 212 (Abstract).CrossRefGoogle Scholar
  53. Sherry, D. F., Jacobs, L. F., & Gaulin, S. J. C. (1992). Spatial memory and adaptive specialization of the hippocampus. Trends in Neuroscience, 15, 298–303.CrossRefGoogle Scholar
  54. Spearman, C. (1904). “General intelligence”, objectively determined and measured. American Journal of Psychology, 15, 201–293.Google Scholar
  55. Squire, L. R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.PubMedCrossRefGoogle Scholar
  56. Stough, C. K. K., Nettlebeck, T., & Cooper, C. J. (1990). Evoked brain potentials, string length and intelligence. Personality and Individual Differences, 11, 401–406.CrossRefGoogle Scholar
  57. Suzuki, K. (1972). Chemistry and metabolism of brain lipids. In R. W. Albers, G. J. Katzman, and B. W. Agranoff (Eds). Basic neurochemistry (pp. 207–225 ). Boston: Little, Brown.Google Scholar
  58. Swindale, N. V. (1990). Is the cortex modular? Trends in Neurosciences, 12, 487–492.CrossRefGoogle Scholar
  59. Tanner, J. M. (1990). Fetus into man. Cambridge, MA: Harvard University Press.Google Scholar
  60. Tobias, P. V. (1970). Brain size, grey matter, and race—fact or fiction? American Journal of Physical Anthropology, 32, 3–26.PubMedCrossRefGoogle Scholar
  61. Turkheimer, E., & Farace, E. (1992). A reanalysis of gender differences in IQ scores following unilateral brain lesions. Psychological Assessment, 4, 498–501.CrossRefGoogle Scholar
  62. Vernon, P. A., & Mori, M. (1992). Intelligence, reaction times, and peripheral nerve conduction velocity. Intelligence, 16, 273–288.CrossRefGoogle Scholar
  63. Vernon, P. A., & Weese, S. E. (1993). Predicting intelligence with multiple speed of information-processing tests. Personality and Individual Differences, 14, 413–419.CrossRefGoogle Scholar
  64. Welker, W. (1990). Why does cerebral cortex fissure and fold? In E. G. Jones and A. Peters (Eds.), Cerebral cortex (Vol. 8B) Comparative structure and evolution of cerebral cortex, Part II (pp. 3–136 ). New York: Plenum Press.Google Scholar
  65. Willerman, L., Schultz, R., Rutledge, A. N., & Bigler, E. D. (1991). In vivo brain size and intelligence. Intelligence, 15, 223–228.Google Scholar
  66. Willerman, L., Schultz, R., Rutledge, A. N., & Bigler, E. D. (1992). Hemisphere size asymmetry predicts relative verbal and nonverbal intelligence differently in the sexes: An MRI study of structure-function relations. Intelligence, 16, 315–328.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Lee Willerman
    • 1
  • Robert Schultz
    • 2
  • J. N. Rutledge
    • 3
  • Erin D. Bigler
    • 4
  1. 1.Department of PsychologyUniversity of Texas at AustinAustinUSA
  2. 2.Child Study CenterYale UniversityNew HavenUSA
  3. 3.Austin Radiological AssociationAustinUSA
  4. 4.Department of PsychologyBrigham Young UniversityProvoUSA

Personalised recommendations