Advertisement

Analysis of Hydra Contraction Behaviour

  • Cloe Taddei-Ferretti
  • L. Cordella
  • S. Chillemi

Abstract

It has been pointed out (Rushforth, 1971, 1973) that the effect of light on contractions of Hydra can be: 1) excitatory, when a contraction occurs within some minutes after a light pulse and is followed by a positive phototropic movement (Haug, 1933); 2) inhibitory, when a light pulse interrupts a contraction in progress, anticipating the next one (Passano and McCullough, 1964) or when the contraction frequency momentarily decreases after a transition from darkness to light (Passano and McCullough, 1964: Borner and Tardent, 1971). The contraction-relaxation behaviour is due to interactions among different pacemakers: excitatory interactions among tentacle pulses and their excitation of contraction pulses (CP’s) (Rushforth and Burke, 1971; Rushforth, 1973) and mutual inhibition between CP’s and rhythmic potentials (RP’s) (Passano and McCullough, 1963). The polarity of Hydra is reflected also in the location of the pacemakers of RP’s and CP’s in the lower column and in the sub-hypostome, respectively (Passano and McCullough, 1963). At this point, we felt that it would be interesting to record the reaction time after single or repetitive light pulses of different polarity, intensity and duration and to investigate the details of the inhibitory effect of light. In addition one could examine the shape of the bioelectric events at the two ends of the animal in undisturbed conditions and under electrical stimulation of either polarity.

Keywords

Light Pulse Positive Stimulus Phase Response Curve Trigger Pulse Photic Stimulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baker, P.F., 1972. Transport and metabolism of calcium ions in nerve. Progr. Biophys. molec. Biol. 24: 177–22CrossRefGoogle Scholar
  2. Benos, D.J., and R.D. Prusch, 1973. Osmoregulation in Hydra: column contraction as a function of external osmolality. Comp. Biochem. Physiol. 44A: 1397–1400.CrossRefGoogle Scholar
  3. Blaustein, M.P., and W.P. Wiesmann, 1970. Effect of sodium ions on calcium movements in isolated synaptic terminals. Proc. Nat. Acad. Sci. 66: 664–671.PubMedCrossRefGoogle Scholar
  4. Borner, M., and P. Tardent, 1971. Der Einfluss von Licht auf die Spontanaktivität von Hydra attenuata Pall. Rev. Suisse Zool. 78: 697–704.Google Scholar
  5. Brown, K.T., and L.T.N. Wiesel, 1961. Analysis of the intraretinal electroretinogram in the intact cat eye. J. Physiol. 158: 229–256.PubMedGoogle Scholar
  6. Ham, R.G., D.C. Fitzgerald Jr. and R.E. Eakin, 1956. Effect of lithium ion on regeneration of Hydra in a chamically defined environment. J. Exp. Zool. 133: 559–572.CrossRefGoogle Scholar
  7. Haug, G., 1933. Die Lichtreaktionen der Hydren (Chlorohydra viridissima und Pelmatohydra oligactis). Z. vergi. Physiol. 19: 246–30Google Scholar
  8. Jahn, T.L., 1962. The mechanism of ciliary movement. II. Ion antagonism and ciliary reversal. J. Cell Comp. Physiol. 60: 217–228.PubMedCrossRefGoogle Scholar
  9. Jennings, H.S., 1906. Behavior of the lower organisms, pp 208–210 of 1962 edition, Indiana University Press, Bloomington.CrossRefGoogle Scholar
  10. Josephson, R.K., 1967. Conduction and contraction in the column of Hydra. J. Exp. Biol. 47: 179–190Google Scholar
  11. Keynes, R.D., and H. Martins-Ferreira, 1953. Membrane potentials in the electroplates of the electric eel. J. Physiol. 119: 315–351.PubMedGoogle Scholar
  12. Kortüm, G., and J.O’M. Bockris, 1951. Textbook of Electrochemistry. Elsevier Press, Amsterdam.Google Scholar
  13. Lüttgau, H.C., and R. Niedergerke, 1958. The antagonism between Ca and Na ions on the frog’s heart. J. Physiol. 143: 486–505.PubMedGoogle Scholar
  14. Mackie, G.O., 1975. Neurobiology of Stomotoca. II. Pacemakers and conduction pathways. J. Neurobiol. 6: 357–378.PubMedCrossRefGoogle Scholar
  15. Macklin, M., and R.K. Josephson, 1971. The ionic requirements of transepithelial potentials in Hydra. Biol. Bull. 141: 299–318.CrossRefGoogle Scholar
  16. Ohtsu, K., and M. Yoshida, 1973. Electrical activity of the anthomedusan, Spirocodon saltatrix (Tilesius). Biol. Bull. 145: 532–547.CrossRefGoogle Scholar
  17. Passano, L.M., and C.B. McCullough, 1963. Pacemaker hierarchies controlling the behaviour of hydras. Nature 199: 1174–1175.PubMedCrossRefGoogle Scholar
  18. Passano, L.M., and C.B. McCullough, 1964. Co-ordinating systems and behaviour in Hydra. I. Pacemaker systems of the periodic contractions. J. Exp. Biol. 41: 643–66Google Scholar
  19. Pavlidis, T., 1973. P. 46 of Biological oscillators: their mathematical analysis. Academic Press, New York.Google Scholar
  20. Pittendrigh, C.S., 1965. On the mechanism of entrainment of circadian rhythm by light cycles. Pages 277–297 in J. Aschoff, ed., Circadian clocks. North-Holland Publishing Co., Amsterdam.Google Scholar
  21. Pittendrigh, C.S., and D.H. Minis, 1964. The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am. Naturalist 98: 261–294.CrossRefGoogle Scholar
  22. Rubin, R.P., 1970. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22: 389–428.PubMedGoogle Scholar
  23. Rushforth, N.B., 1971. Behavioral and electrophysiological studies of Hydra. I. Analysis of contraction pulse patterns. Biol. Bull. 140: 255–273.CrossRefGoogle Scholar
  24. Rushforth, N.B., 1973. Behavioral modifications in Coelenterates. pp 123–169 in W.C. Corning and J.A. Dyal, eds., Invertebrate learning, Vol. 1 Plenum Press, New York-London.CrossRefGoogle Scholar
  25. Rushforth, N.B., and D.S. Burke, 1971. Behavioral and electrophysiological studies of Hydra. II. Pacemaker activity of isolated tentacles. Biol. Bull. 140: 502–519.CrossRefGoogle Scholar
  26. Schwab, W.E., R.K. Josephson, N.B. Rushforth, B.A. Marcum and R.D. Campbell, 1976. Excitability of nerve-free Hydra. Abstracts of this Symposium.Google Scholar
  27. Spencer, A.N., 1974. Behavior and electrical activity in the hydrozoan Proboscidactyla flavicirrata (Brandt) I. The hydroid colony. Biol. Bull. 145: 100–115.CrossRefGoogle Scholar
  28. Taddei-Ferretti, C., and L. Cordella, 1975. Modulation of Hydra attenuata rhythmic activity. Photic stimulation. Arch. it. Biol. 113: 107–12Google Scholar
  29. Taddei-Ferretti, C., L. Cordella and S. Chillemi, 1976. Hydra simple nervous system and behaviour. In press, in Proc. 3rd Eur. Meet. Cyb. Syst. Res., Vienna.Google Scholar
  30. Tardent, P., E. Frei, M. Borner and F. Zürcher, 1976. The reactions of Hydra attenuata Pall, to various photic stimuli. This volume.Google Scholar
  31. Tornita, T., 1950. Studies on the intraretinal action potential I. Relation between the localization of micro-pipette in the retina and the shape of the intraretinal action potential. Jap. J. Physiol. 1: 110–117.CrossRefGoogle Scholar
  32. Yoshikami, S., and W.A. Hagins, 1973. Control of the dark current in Vertebrate rods and cones. pp 245–255 in H. Langer, ed., Biochemistry and physiology of visual pigments. Springer-Verlag, Berlin.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1976

Authors and Affiliations

  • Cloe Taddei-Ferretti
    • 1
  • L. Cordella
    • 1
  • S. Chillemi
    • 1
  1. 1.Laboratorio di CiberneticaC.N.R.Arco Felice, NapoliItalia

Personalised recommendations