Clostridia pp 227-263 | Cite as

Clostridial Enzymes

  • Badal C. Saha
  • Raphael Lamed
  • J. Gregory Zeikus
Part of the Biotechnology Handbooks book series (BTHA, volume 3)


Enzymes are catalytic proteins produced by living systems. In recent years, enzymes have gained wider applications in the biotechnology industry. Enzymes are grouped into six major classes: oxidoreductases, transferases, hydrolases, lyases, ligases, and isomerases. Table I lists some industrial enzymes that are used primarily in the food-related industries and in detergents. Enzymes are also finding applications in pharmaceutical synthesis, therapeutic contexts, and in clinical and chemical analysis. The majority of commercialized enzymes are hydrolases such as amylase, cellulase, pectinase, protease, lipase, and collagenase. Other important enzymes are glucose isomerase and glucose oxidase. Clostridium spp. or endospore-forming anaerobes may have a potential in enzyme technology for two general reasons. First, species are very diverse and they produce a wide variety of enzymes, although not oxygenases. Second, Clostridia as anaerobes evolved early on earth under energy-limited conditions, which may have placed strong selection pressure on the evolution of very efficient catabolic enzymes. This hypothesis receives indirect support from the rapid growth rate of many anaerobes (e.g., C. perfringens grows with a doubling time of less than 15 min). Very little enzyme technology has exploited Clostridium spp. as the source of biocatalysts, largely because of their low growth yields.


Endoglucanase Activity Clostridium Acetobutylicum Cellulase Gene Clostridium Thermocellum Glucose Isomerase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdullah, M., and French, D., 1970, Substrate specificity of pullulanase, Arch. Biochem. Biophys. 137:483–493.PubMedGoogle Scholar
  2. Abdullah, M., Catley, B. J., Lee, E. Y. C., Robyt, J., Wallenfels, K., and Whelan, W. J., 1966, The mechanism of carbohydrase action. II Pullulanase, an enzyme specific for the hydrolysis of alpha-1,6 bonds in amylacious oligo- and polysaccharides, Cereal Chem. 43:111–118.Google Scholar
  3. Adams, K. R., and Priest, F. G., 1977, Extracellular pullulanase synthesis in Bacillus macerans, FEMS Lett. 1:269–273.Google Scholar
  4. Ait, N., Creuzet, N., and Forget, P., 1979, Partial purification of cellulase from C. thermocellum, J. Gen. Microbiol. 113:399–400.Google Scholar
  5. Angermaier, L., and Simon, H., 1983, On nitroaryl reductase activities in several Clostridia. Z. Physiol. Chem. 354:1653–1663.Google Scholar
  6. Antranikian, G., Herzberg, C., and Gottschalk, G., 1987a, Production of thermostable α-amylase, pullulanase, and α-glucosidase in continuous culture by a new Clostridium isolate, Appl. Environ. Microbiol. 53:1668–1673.Google Scholar
  7. Antranikian, G., Herzberg, C., and Gottschalk, G., 1987b, Production of thermostable α-amylase, pullulanase and α-glucosidase in continuous culture by a new Clostridium isolate, Appl. Environ. Microbiol. 53:1668–1673.PubMedGoogle Scholar
  8. Antranikian, G., Herzberg, C., Mayer, F. and Gottschalk, G., 1987c, Changes in the cell envelope structure of Clostridium sp. strain EMI during massive production of α-amylase and pullulanase, FEMS Microbiol. Letters. 41:193–197.Google Scholar
  9. Antranikian, G., Zablowski, P., and Gottschalk, G., 1987d, Conditions for the overproduction and excretion of thermostable α-amylase and pullulanase from Clostridium ther-mohydrosulfuricum DSM 567, Appl. Microbiol. Biotechnol. 27:75–81.Google Scholar
  10. Bachofen, R., Buchanan, B. B., and Arnon, D. I., 1964, Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. Proc. Natl. Acad. Sci. USA 51:690–694.PubMedGoogle Scholar
  11. Baker, F., Nasr, H., Morrice, F. and Bruce, J., 1950, Bacterial breakdown of structural starches and starch products in the digestive tract of ruminant and non-ruminant mammals, J. Path. Bacteriol. 62:617–638.Google Scholar
  12. Balls, A. K., Thompson, R. P., and Waiden, M. K., 1946, Crystalline protein with beta-amylase activity, prepared from sweet potatoes, J. Biol. Chem. 163:571–572.PubMedGoogle Scholar
  13. Bayer, E. A., and Lamed, R., 1986, Ultrastructure of the cell surface cellulosome of Clostridium thermocellum and its interaction with cellulose, J. Bacteriol. 167:828–836.PubMedGoogle Scholar
  14. Bayer, E. A., Kenig, R., and Lamed, R., 1983, Studies on the adherence of Clostridium thermocellum to cellulose, J. Bacteriol. 156:818–827.PubMedGoogle Scholar
  15. Bayer, E. A., and Setter, E., and Lamed, R., 1985, Organization and distribution of the cellulosome in Clostridium thermocellum, J. Bacteriol. 163:552–559.PubMedGoogle Scholar
  16. Beguin, P., 1983, Detection of cellulase activity in Polyacrylamide gels using Congo red-stained agar replicas, Anal. Biochem. 131:333–336.PubMedGoogle Scholar
  17. Beguin, P., Cornet, P., and Aubert, J.-P., 1985, Sequence of a cellulase gene of the thermophilic bacterium C. thermocellum, J. Bacteriol. 162:102–105.Google Scholar
  18. Bender, H. and Wallenfels, K., 1961, Untersuchungen an Pullulan II. Spezifischer Abban durch ein bakterielles, Enzym. Biochem. Z. 334:79–95.Google Scholar
  19. Brandt, C. J., Catley, B. J., and William, M. A., Jr., 1976, Extracellular and protease-released pullulanase, J. Bacteriol. 125:501–508.PubMedGoogle Scholar
  20. Bronnenmeier, K., and Staudenbauer, W. L., 1988, Resolution of Clostridium stercorarium cellulase by fast protein liquid chromatography, Appl. Microbiol. Biotechnol. 27:432–436.Google Scholar
  21. Buchanan, B. B., 1972, Ferredoxin-linked carboxylation reactions, in: The Enzymes, Vol. 4 (P. D. Boyer, ed.), Academic Press, New York, pp. 193–216.Google Scholar
  22. Cavedon, K., Leschine, S. B., and Canale-Parola, E., 1987, A high molecular weight protein complex is responsible for the degradation of crystalline cellulose by a mesophilic Clostridium, Ann. Meet. Am. Soc. Microbiol., Abst. K127, p. 223.Google Scholar
  23. Chojecki, A. and Blaschek, H. P., 1986, Effect of carbohydrate source on α-amylase and glucoamylase formation by Clostridium acetobutylicurn SA-1, J. Ind. Microbiol. 1:63–67.Google Scholar
  24. Coleman, R. D., Yang, S.-S., and McAlister, M. P., 1987, Cloning of the debranching enzyme gene from Thermoanaerobium brockii into Escherichia coli and Bacillus subtilis, J. Bacteriol. 169:4302–4307.Google Scholar
  25. Cornet, P., Millet, J., Beguin, P., and Aubert, M.-P., 1983, Characterization of two cell (cellulose degradation) genes of C. thermocellum coding for endoglucanases, Bio/Technology 1:589–594.Google Scholar
  26. Creuzet, N., and Frixon, C., 1983, Purification and characterization of an endoglucanase from a newly isolated thermophilic anaerobic bacterium, Biochimie 65:149–156.PubMedGoogle Scholar
  27. Creuzet, N., Berenger, J.-F., and Frixon, C., 1983, Characterization of exoglucanase and synergistic hydrolysis of cellulose in Clostridium stercorarium, FEMS Microbiol. Lett. 20:347–350.Google Scholar
  28. Demain, A. L., and Wu, J. H. D., (1987), Proteins of the Clostridium thermocellum cellulase complex responsible for degradation of crystalline cellulose, in: Biochemistry and Cenetics of Cellulase Degradation (J.-P. Aubert, P. Beguin, and J. Millet, eds.), Academic Press, London, pp. 117–131.Google Scholar
  29. Eisele, E., Rashed, I. R., and Wallenfels, K., 1972, Molecular characterization of pullulanase from Aerobacter aerogenes. Eur. J. Biochem. 26:62–67.Google Scholar
  30. Emod, I., and Keil, B., 1977, Five sepharose-bound ligands for the chromatographic purification of Clostridium collagenase. FEBS Lett. 77:51–56.PubMedGoogle Scholar
  31. Enevoldsen, B. S., Reimann, L., and Hansen, N. L., 1977, Biospecific affinity chromatography of pullulanase, FEBS Lett. 79:121–124.PubMedGoogle Scholar
  32. Ensley, B., McHugh, J. J., and Barton, L. L., 1975, Effect of carbon source on formation of α-amylase and glucoamylase by Clostridium acetobutylicurn, J. Cen. Appl. Microbiol. 21:51–59.Google Scholar
  33. Fleminger, G., and Yaron, A., 1984, Soluble and immobilized Clostridial aminopeptidase and aminopeptidase P as metal requiring enzymes, Biochim. Biophys. Acta 789:245–256.PubMedGoogle Scholar
  34. Fleminger, G., and Yaron, A., 1987, Application of immobilized aminopeptidases for sequential hydrolysis of proline containing peptides, Methods Enzymol. 136:170–178.PubMedGoogle Scholar
  35. Fogarty, W. M., 1983, Microbial amylases, in: Microbial Enzymes and Biotechnology (W. M. Fogarty, ed.), Applied Science, London, pp. 1–92.Google Scholar
  36. Fogarty, W. M., and Griffin, P. J., 1975, Purification and properties of β-amylase produced by Bacillus polymyxa, J. Appl. Chem. Biotechnol. 25:229–238.Google Scholar
  37. Fogarty, W. M., and Kelly, C. T., 1983, Pectic enzymes, in Microbial Enzymes and Biotechnology, (W. M. Fogarty, ed.), Applied Science Publishers, London, pp. 131–182.Google Scholar
  38. French, D., and Knapp, D. W., 1950, The maltase of Clostridium acetobutylicurn. Its specificity range and mode of action. J. Biol. Chem. 187:463–471.PubMedGoogle Scholar
  39. Gallop, P. M., Seifter, S., and Meilman, E., 1957, Collagen. I. Partial purification, assay, and mode of activation of bacterial collagenase. J. Biol. Chem. 227:891–906.PubMedGoogle Scholar
  40. Gerwig, G. J., Waard, P. D., Kamerling, J. P., Vliegenthart, F. G., Morgenstern, E., Lamed, R., and Bayer, E. A., 1989, Novel O-linked carbohydrate chains in the cellulase-complex (cellulosome) of Clostridium thermocellum, J. Biol. Chem. 264:1027–1035.PubMedGoogle Scholar
  41. Giuliano, C., and Khan, A. W., 1985, Conversion of cellulose to sugars by resting cells of a mesophilic anaerobe, Bacteroides succinogenes, Can. J. Microbiol. 27:517–530.Google Scholar
  42. Grant, N. H. and Alburn, H. E., 1959, Collagenase of Clostridium histolyticum, Arch. Biochem. Biophys. 82:245–255.PubMedGoogle Scholar
  43. Harper, E., and Seifter, S., 1965, Mechanism of action of collagenase. Inhibition by cysteine, Fed. Proc. 24:359.Google Scholar
  44. Higashihara, M., and Okada, S., 1974, Studies on β-amylase of Bacillus megaterium strain No. 32, Agric. Biol. Chem. 38:1023–1029.Google Scholar
  45. Hobson, P. N., and MacPherson, M., 1952, Amylases of Clostridium butyricum and a Streptococcus isolated from the rumen of the sheep, Biochem. J. 52:671–679.PubMedGoogle Scholar
  46. Hockenhull, D.J. D., and Herbert, D., 1945, The amylase and maltase of Clostridium acetobuty-licum, Biochem. J. 39:102–106.PubMedGoogle Scholar
  47. Hon-nami, K., Coughlan, M. P., Hon-nami, H., Carreira, L. H., and Ljungdahl, L. G., 1985, Properties of the cellulolytic enzyme system of C. thermocellum, Biotechnol. Bioeng. Symp., 15:191–205.Google Scholar
  48. Hoshino, M., Hirose, Y., Sano, K., and Mitsuyi, K., 1975, Adsorption of microbial β-amylase on starch, Agric. Biol. Chem. 39:2415–2416.Google Scholar
  49. Hungate, R. E., 1944, Studies on cellulose fermentation, J. Bacteriol. 48:499–513.PubMedGoogle Scholar
  50. Hyun, H. H., and Zeikus, J. G., 1985a, General biochemical characterization of thermostable extracellular β-amylase from Clostridium thermosulfurogenes, Appl. Environ. Microbiol. 49:1162–1167.PubMedGoogle Scholar
  51. Hyun, H. H., and Zeikus, J. G., 1985b, Regulation and genetic enhancement of β-amylase production in Clostridium thermosulfurogenes, Appl. Environ. Microbiol. 164:1162–1170.Google Scholar
  52. Hyun, H. H., and Zeikus, J. G., 1985c, General biochemical characterization of thermostable pullulanase and glucoamylase from Clostridium thermohydrosulfuricum, Appl. Environ. Microbiol. 49:1168–1173.PubMedGoogle Scholar
  53. Hyun, H. H., and Zeikus, J. G., 1985d, Regulation and genetic enhancement of glucoamylase and pullulanase production in Clostridium thermohydrosulfuricum, J. Bacteriol. 164:1162–1170.PubMedGoogle Scholar
  54. Hyun, H. H. and Zeikus, J. G., 1985e, Simultaneous and enhanced production of thermostable amylases and ethanol from starch by cocultures of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum, Appl. Environ. Microbiol. 49:1174–1181.PubMedGoogle Scholar
  55. Hyun, H. H., Shen, J.-G., and Zeikus, J. G. 1985, Differential amylosaccharide metabolism of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum. J. Bacteriol. 164:1153–1161.PubMedGoogle Scholar
  56. Jain, M. K., and Zeikus, J. G. (1988), Taxonomic distinction of two new protein specific, hydrolytic anaerobes: isolation and characterization of Clostridium proteolyticum sp. nov. and Clostridium collagenovorans sp. nov., System. Appl. Microbiol. 10:134–141.Google Scholar
  57. Johnson, E. A., Sakajoh, M., Halliwell, G., Madia, A., and Demain, A. L., 1982a, Saccharification of complex cellulosic substrates by the cellulase system from C. thermocellum, Appl. Environ. Microbiol. 43:1125–1132.Google Scholar
  58. Johnson, E. A., Reese, E. T., and Demain, A. L., 1982b, Inhibition of C. thermocellum cellulase by end products of cellulolysis, J. Appl. Biochem. 4:64–71.Google Scholar
  59. Johnson, E. A., Bouchot, F., and Demain, A. L., 1985, Regulation of cellulase formation in C. thermocellum, J. Gen. Microbiol. 131:2302–2308.Google Scholar
  60. Joliff, G., Beguin, P., Juy, M., Millet, J., Ryter, A., Poljak, R., and Aubert, J.-P., 1986a, Isolation, crystallization and properties of a new cellulase of Clostridium thermocellum overproduced in Escherichia coli, Bio/Technology 4:896–900.Google Scholar
  61. Joliff, G., Beguin, P., Millet, J., Aubert, J.-P., Alzari, P., Juy, M., and Poljak, R., 1986b, Crystallization and preliminary X-ray diffraction study of an endoglucanase from Clostridium thermocellum, J. Mol. Biol. 189:249–250.PubMedGoogle Scholar
  62. Kaji, A., Anabuki, Y., Taki, H., Oyama, Y., and Okada, T., 1963, Studies on the enzymes acting on arabans. Action and separation of arabanase produced by Clostridium felsineum (Eubacteriales). Kagawa Daigaku Nogakubu Gabuzyuta Kokuku. 15:40–44.Google Scholar
  63. Kaplan, F., Setlow, P. and Kaplan, N. O., 1969, Purification and properties of a DPNH-TPNH diaphorase from Clostridium kluyverii, Arch. Biochem. Biophys. 132:91–98.PubMedGoogle Scholar
  64. Katkocin, D., Word, N. S. and Wang, S. S., 1985, Thermostable glucoamylase and method for its production, U.S. Patent 4, 536, 477.Google Scholar
  65. Kawazu, T., Nakanishi, Y., Uozumi, N., Sasaki, T., Yamagata, H., Tsukagoshi, N., and Udaka, S., 1987, Cloning and nucleotide sequence of the gene coding for enzymatically active fragments of the Bacillus polymyxa beta-amylase, J. Bacteriol. 169:1564–1570.PubMedGoogle Scholar
  66. Keinan, E., Hafeli, K. H., Seth, K. K., and Lamed, R., 1986a, Thermostable enzymes in organic synthesis II. Asymetric reduction of ketones with alcohol dehydrogenase from Thermoanaerobium brockii, J. Am. Chem. Soc. 108:162–169.Google Scholar
  67. Keinan, E., Kamal, K. K. and Lamed, R., 1986b, Organic synthesis with enzyme, 3. TBADH-catalyzed reduction of chloroketones. Total synthesis of (+)-(S,S)-cis-6-methyltetrahydro-pyran-2yl) acetic acid a civet constituent J. Am. Chem. Soc. 108:3474–3480.Google Scholar
  68. Keinan, E., Seth, K. K. and Lamed, R., 1987, Synthetic applications of alcohol dehydrogenase in Thermoanaerobium brockii, 8th Symp. Enzyme Engineering, Vol. 501, New York Academy of Sciences, pp. 130–149.Google Scholar
  69. Kessler, E., and Yaron, A. (1976), An extracellular aminopeptidase from Clostridium histo-lyticum, J. Biochem. 63:271–287.Google Scholar
  70. Koch, R., Zablowski, P., and Antranikian, G., 1987, Highly active and thermostable amylases and pullulanases from various anaerobic thermophiles, Appl. Microbiol. Biotechnol. 27:192–198.Google Scholar
  71. Kono, T., 1968, Purification and partial characterization of collagenolytic enzymes fromClostridium histolyticum, Biochemistry 7:1106–1114.PubMedGoogle Scholar
  72. Lamed, R., and Zeikus, J. G., 1980, Glucose fermentation pathway of Thermoanaerobium brockii, J. Bacteriol. 141:1225.Google Scholar
  73. Lamed, R., and Zeikus, J. G., 1981, Novel NADP-linked alcohol-aldehyde/ketone oxidoreduc-tase in thermophilic ethanologenic bacteria, Biochem. J. 195:183.PubMedGoogle Scholar
  74. Lamed, R., and Bayer, E. A., 1986, Contact and cellulolysis in Clostridium thermocellum via extensive surface organelles, Experientia 42:72–73.Google Scholar
  75. Lamed, R., and Bayer, E. A., 1987, The cellulosome concept: exocellular/extracellular enzyme reactor centers for efficient binding and cellulolysis, in: Biochemistry and Genetics of Cellulose Degradation (J.-P. Aubert, P. Beguin, and J. Millet, eds.), Academic Press, London, pp. 101–116.Google Scholar
  76. Lamed, R., and Bayer, E. A., 1988a, The cellulosome of Clostridium thermocellum, Adv. Appl. Microbiol. 33:1–46.Google Scholar
  77. Lamed, R., and Bayer, E. A., 1988b, Cellulose degradation by thermophilic anaerobic bacteria, in: Biosynthesis and Biodegradation of Cellulose and Cellulose Materials (P. J. Weimer and D. A. Haigler, eds.), Marcel Dekker, New York (in press).Google Scholar
  78. Lamed, R., Keinan, E., and Zeikus, J. G., 1981, Potential applications of an aldose/ketose oxidoreductase from thermophilic bacteria, Enzyme Microb. Tech. 3:144–148.Google Scholar
  79. Lamed, R., Setter, E., Kenig, R., and Bayer, E. A., 1983a, The cellulosome — A discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities, Biotechnol. Bioeng. Symp. 13:163–181.Google Scholar
  80. Lamed, R., Setter, E., and Bayer, E. A., 1983b, Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum, J. Bacteriol. 156:828–836.PubMedGoogle Scholar
  81. Lamed, R., Kenig, R., Setter, E., and Bayer, E. A., 1985, The major characteristics of the celluloytic system of Clostridium thermocellum coincide with those of the purified cellulosome, Enzyme Microb. Technol. 7:37–41.Google Scholar
  82. Lamed, R., Naimark, J., Morgenstern, E., and Bayer, E. A., 1987, Specialized cell surface structures in cellulolytic bacteria, J. Bacteriol. 169:3792–3800.PubMedGoogle Scholar
  83. Lee, M., Miller, L. and Macmillan, J. D., 1970, Similarities in the action patterns of exopolygalacturonate lyase and pectinesterase from Clostridium multifermentansJ. Bacteriol. 103:595–600.PubMedGoogle Scholar
  84. Lee, S. F., Forsberg, C. W., and Gibbons, L. N., 1985, Cellulolytic activity of Clostridium acetobutylicum, Appl. Environ. Microbiol. 50:220–228.PubMedGoogle Scholar
  85. Lee, S. F., Forsberg, C. W., and Rattray, J. B., 1987, Purification and characterization of two endoxylanases from Clostridium acetobutylicum ATCC 824, Appl. Environ. Microbiol. 53:644–650.PubMedGoogle Scholar
  86. Lee-Owen, V. and Anderson, J. C., 1975, Preparation of a bacterial collagenase containing negligible non-specific protease activity, Prep. Biochem. 5:229–245.Google Scholar
  87. Levdikova, G. A., Orekhovich, V. N., Soloveva, N. I. and Shpikiter, V. O., 1963, Dissociation of collagenase molecules into subunits, Dokl. Akad. Nauk S.S.S.R. 153:725–727.Google Scholar
  88. Ljundahl, L. G., and Wiegel, J. K. W., 1981, Anaerobic thermophilic culture system, U.S. Patent 4,292–406.Google Scholar
  89. Ljungdahl, L. G., and Eriksson, K.-E., 1985, Ecology of microbial cellulose degradation, Adv. Microbial. Ecol. 8:237–299.Google Scholar
  90. Ljungdahl, L. G., Peterson, B., Eriksson, K.-E., and Wiegel, J., 1983, A yellow affinity substance involved in the cellulolytic system of C. thermocellum, Current Microbiol. 9:195–200.Google Scholar
  91. Lovitt, R. W., James, E. W., Kell, D. B., and Morris, J. G., 1987, Bioelectrochemical transformations catalyzed by Clostridium sporogenes. In: Bioreactors and Biotransformations (Moody, G. W., and Baker, P. B., eds.), Elsevier Appl. Sci. Publishers, London, pp. 263–276.Google Scholar
  92. Lovitt, R. W., Kell, D. B., and Morris, J. G., 1988a, Characterization of the carbon and electron flow pathways involved in the Stickland reaction of C. sporogenes, NC1B 8053. J. Appl. Bacteriol. (in press).Google Scholar
  93. Lovitt, R. W., Kim, B.-H., Shen, G.-J., and Zeikus, J. G., 1988b, Solvent production by microorganisms, Crit. Rev. Biotechnol. 7:107–186.Google Scholar
  94. Lund, B. M., and Brocklehurst, T. F., 1978, Pectic enzymes of pigmented strains of Clostridium, J. Gen. Microbiol. 104:59–66.Google Scholar
  95. Lwebuga-Mukasa, J. S., Harper, E., and Taylor, P., 1976, Clostridium: Characterization of individual enzymes, Biochemistry 15:4736–4741.PubMedGoogle Scholar
  96. Macmillan, J. D., Phaff, H. J., and Vaughn, R. H., 1964, The pattern of action of an exopolygalacturonic acid trans-eliminase from Clostridium multifermentans, Biochemistry 3:572–578.PubMedGoogle Scholar
  97. Madden, R. M., 1983, Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile, Int. J. Systm. Bacteriol. 32:837–840.Google Scholar
  98. Madi, E., Antranikian, G., Ohmiya, K. and Gottschalk, G., 1987, Thermostable amylolytic enzymes from a new Clostridium isolate, Appl. Environ. Microbiol. 53:1661–1667.PubMedGoogle Scholar
  99. Mandl, I., 1972, Collagenase comes of age, in Collagenase (I. Mandl, ed.), Gordon and Breach, New York, pp. 1–16.Google Scholar
  100. Mandl, I., Keller, S., and Monahan, J., 1964, Multiplicity of Clostridium hystolyticum collagenases, Biochemistry 3:1737–1741.PubMedGoogle Scholar
  101. Melasniemi, H., 1987a, Effect of carbon source of production of thermostable α-amylase, pullulanase, and α-glucosidase by Clostridium thermohydrosulfuricum, J. Gen. Microbiol. 133:883–890.Google Scholar
  102. Melasniemi, H., 1987b, Characterization of α-amylase and pullulanase activities of Clostridium thermohydrosulfuricum, Biochem. J. 246:193–197.PubMedGoogle Scholar
  103. Mercier, C., Frantz, B. M. and Whelan, W. J., 1972, An improved purification of cell-bound pullulanase from Aerobacter aerogens, Eur. J. Biochem. 26:1–9.PubMedGoogle Scholar
  104. Miller, L. and Macmillan, J. D., 1970, Mode of action of pectic enzymes. II. Further purification of exopolygalacturonate lyase and pectinesterase from Clostridium multifermentans, J. Bacteriol. 102:72–78.PubMedGoogle Scholar
  105. Millet, J., Petre, D., Beguin, P., Raynaud, O., and Aubert, J.-P., 1985, Cloning of ten distinct DNA fragments of C. thermocellum coding for cellulases, FEMS Microbiol. Lett. 29:145 – 149.Google Scholar
  106. Mitchell, W. M., and Harrington, W. F., 1971, Clostripain, in: The Enzymes, Vol. 3 (P. D. Boyer, ed.), Academic Press, New York, pp. 699–719.Google Scholar
  107. Mizokami, K., Kozaki, M., and Kitahara, K., 1978, Crystallization and properties of raw starch hydrolyzing enzyme produced by Streptococcus bovis, J. Jpn. Soc. Starch Sci. 25:132–139.Google Scholar
  108. Morgenstern, E., Bayer, E. A., Vliegenthart, J. F. G., Gerwig, G., Kamerling, H., and Lamed, R., 1987, Structure and possible function of glycosylated polypeptides in C. thermocellum, Proc. FEMS Symp., 43:59.Google Scholar
  109. Murao, S., Ohyama, K., and Arai, M., 1979, β-Amylases from Bacillus polymyxa, No. 72, Agric. Biol. Chem. 43:719–726.Google Scholar
  110. Nakamura, N., Watanabe, K. and Horikoshi, K., 1975, Purification and some properties of alkaline pullulanase from a strain by Bacillus no. 202–1, an alkaline microorganism, Biochim. Biophys. Acta 397:188–193.PubMedGoogle Scholar
  111. Ng, T. K. and Zeikus, J. G., 1981a, Comparison of extracellular cellulase activities of Clostridium thermocellum LQRI and Trichoderma reesei QM 9414, Appl. Environ. Microbiol. 42:231–240.PubMedGoogle Scholar
  112. Ng, T. K., and Zeikus, J. G., 1981b, Purification and characterization of an endoglucanase (1,4-β-D-glucan glucanohydrolase) from C. thermocellum, Biochem. J. 199:341–350.PubMedGoogle Scholar
  113. Ng, T. K., and Zeikus J. G., 1982, Differential metabolism of cellobiose and glucose by C. thermocellum and Clostridium thermohydrosulfuricum, J. Bacteriol. 150:1391–1399.PubMedGoogle Scholar
  114. Ng, T. K., and Zeikus, J. G., 1988, Endoglucanase from Clostridium thermocellum, Methods Enzymol. 160:351–355.Google Scholar
  115. Ng, T. K., Weimer, P. J., and Zeikus, J. G., 1977, Cellulolytic and physiological properties of Clostridium thermocellum, Arch. Microbiol. 114:1–7.PubMedGoogle Scholar
  116. Ng, T. K., Ben-Bassat, A., and Zeikus, J. G., 1981, Ethanol production by thermophilic bacteria: Fermentation of cellulosic substrates by co-cultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum, Appl. Environ. Microbiol. 41:1337–1343.PubMedGoogle Scholar
  117. Norman, B. E., 1982, A novel debranching enzyme for application in the glucose syrup industry, Starch / Starke 34:340–346.Google Scholar
  118. Ohba, R., and Ueda, S., 1973, Purification, crystallization, and some properties of intracellular pullulanase from Aerobacter aerogenes, Agric. Biol. Chem. 37:2821–2826.Google Scholar
  119. Ohba, R. and Ueda, S., 1975, Some properties of crystalline extra- and intra-cellular pullulanase from Aerobacter aerogenesAgric. Biol. Chem. 37:2821–2826.Google Scholar
  120. Oppenheim, F. and Franzblau, C., 1978, A modified procedure for the purification of Clostridial collagenase, Prep. Biochem. 8:387–407.PubMedGoogle Scholar
  121. Peterkosky, B., 1982, Bacterial collagenase, in: Methods in Enzymology, Vol. 82 (L. W. Cunninggham and D. W. Frederiksen, ed.), Academic Press, New York, pp. 453–471.Google Scholar
  122. Petre, J., Longin, R., and Millet, J., 1981, Purification and properties of an endo-β-1,4-glucanase from C. thermocellum, Biochimie 63:629–639.Google Scholar
  123. Petre, D., Millet, J., Longin, R., Beguin, P., Girard, H., and Aubert, J.-P., 1986, Purification and properties of the endoglucanase C of Clostridium thermocellum produced in Escherichia coli, Biochimie 68:687–695.PubMedGoogle Scholar
  124. Plant, A. R., Patel, B. K. C., Morgan, H. W., and Daniel, R. W., 1987a, Starch degradation by thermophilic anaerobic bacteria, Syst. Appl. Microbiol. 9:158–162.Google Scholar
  125. Plant, A. R., Clemens, R. M., Daniel, R. M., and Morgan, H. W., 1987b, Purification and preliminary characterization of an extracellular pullulanase fromThermoanaerobium Tok6-B1, Appl. Microbiol. Biotechnol. 26:427–433.Google Scholar
  126. Pugsley, A. P., Chapon, C, and Schwartz, M., 1986, Extracellular pullulanase of Klebsiella pneumoniae is a lipoprotein, J. Bacteriol. 166:1083–1088.PubMedGoogle Scholar
  127. Romaniec, M. P. M., Clarke, N. G., and Hazlewood, G. P., 1987, Molecular cloning of Clostridium thermocellum DNA and the expression of further novel endo β-glucanases genes in Escherichia coli, J. Gen. Microbiol. 133:1297–1307.PubMedGoogle Scholar
  128. Saha, B. C., Shen, G.-J., and Zeikus, J. G., 1987, Behaviour of a novel thermostable β-amylase on raw starch, Enzyme Microb. Technol. 9:598–601.Google Scholar
  129. Saha, B. C., Mathupala, S. P., and Zeikus, J. G., 1988, Purification and characterization of a highly thermostable, novel pullulanase from Clostridium thermohydrosulfuricum, Biochem. J. 247:343–348.Google Scholar
  130. Schink, B. and Zeikus, J. G., 1983, Characterization of pectinolytic enzymes of Clostridium thermosulfurogenes, FEMS Microbiol. Lett. 17:295–298.Google Scholar
  131. Schwarz, W. H., Schimming, K. S., and Staudenbauer, W. L., 1987, High-level expression of Clostridium thermocellum cellulase genes in Escherichia coli, Appl. Microbiol. Biotechnol. 27:50–57.Google Scholar
  132. Scott, D. and Hedrick, L. R., 1952, The amylase of Clostridium acetobutylicum, J. Bacteriol. 63:795–803.PubMedGoogle Scholar
  133. Seifter, S. and Harper, E., 1970, Collagenases, in: Methods of Enzymology (G. E. Perlmann and L. Lorand, eds.), Academic Press, New York, pp. 613–635.Google Scholar
  134. Seifter, S., and Gallop, P. M., 1962, Collagenase from Clostridium histolyticum, in: Methods in Enzymology, Vol. 5 (S. P. Colowick and N. O. Kaplan, eds.), Academic Press, New York, pp. 659–665.Google Scholar
  135. Seifter, S. and Harper, E., 1971, The collagenases, in: The Enzymes, Vol. 3 (P. D. Boyer, ed.), Academic Press, New York, pp. 649–697.Google Scholar
  136. Seifter, S., Gallop, P. M., Klein, L., and Meilman, E., 1959, Collagen. II. Properties of purified collagenase and its inhibition, J. Biol.Chem. 234:285–293.PubMedGoogle Scholar
  137. Sheiman, M. I., Macmillan, J. D., Miller, L., and Chase, T., 1976, Coordinated action of pectinesterase and polygalacturonate lyase complex of Clostridium multifermentans, Eur. J. Biochem. 64:565–572.PubMedGoogle Scholar
  138. Shen, G.-J., Saha, B. C., Lee, Y. Y., Bhatnagar, L., and Zeikus, J. G., 1988, Purification and characterization of a novel thermostable β-amylase from Clostridium thermosulfurogenes, Biochem. J. 254:835–840.Google Scholar
  139. Simon, H., Bader, J., Guntner, H., Neumann, S., and Thanos, J., 1985, Chiral compounds synthesized by biocatalytic reductions, Agnew. Chem. Int. Ed. Engl. 24:539–553.Google Scholar
  140. Sleat, R., Mah, R. A., and Robinson, R., 1984, Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov., Appl. Environ. Microbiol. 48:88–93.PubMedGoogle Scholar
  141. Strauch, L., and Grassmann, W., 1966, Purification of collagenase. III. Isolation of enzymically homogeneous collagenase, Z. Physiol. Chem. 344:140–158.Google Scholar
  142. Takasaki, Y., 1976, Purification and enzymatic properties of β-amylase and pullulanase from Bacillus cereus var. mycoides, Agric.Biol. Chem. 48:1523–1530.Google Scholar
  143. Tanaka, H., and Stadtman, T. C., 1979, Selenium-dependent clostridial glycine reductase: Purification and characterization of the two membrane-associated protein components, J. Biol. Chem. 254:447–452.PubMedGoogle Scholar
  144. Tanaka, T., Shimomura, Y., Himejima, M., Taniguchi, M., and Oi, S., 1986, Characterization of xylan-utilizing anaerobes from mesophilic and thermophilic methane sludge and their xylan degrading enzymes, Agric. Biol. Chem. 50:2185–2192.Google Scholar
  145. Tanaka, T., Shimomura, Y., Taniguchi, M., and Oi, S., 1987a, Raw starch-utilizing anaerobe from mesophilic methane sludge and its production of amylase, Agric. Biol. Chem. 51:591–592.Google Scholar
  146. Tanaka, T., Ishimoto, E., Shimomura, Y., Taniguchi, M., and Oi, S., 1987b, Purification and some properties of raw starch-binding amylase of Clostridium butyricum T-7 isolated from mesophilic methane sludge, Agric. Biol. Chem. 51:309–405.Google Scholar
  147. Taniguchi, H., Jae, C. M., Yoshigi, N., and Maruyama, Y., 1983, Purification of Bacillus circulans F2 amylase and its general properties. Agric. Biol.Chem. 47:511–519.Google Scholar
  148. Taya, M., Suzuki, Y., and Kobayashi, T., 1984, A thermophilic anaerobe (Clostridium species) utilizing various biomass-derived carbohydrates, J. Ferment. Technol. 62:229–236.Google Scholar
  149. Ueda, S., and Ohba, R., 1972, Purification, crystallization and some properties of extracellular pullulanase from Aerobacter aerogenes, Agric. Biol. Chem. 36:2381–2391.Google Scholar
  150. Ueda, S., and Saha, B. C., 1981, Raw starch digestion by microbial amylase, Utiliz. Res. 1:9–17.Google Scholar
  151. Viljoen, J. A., Fred, E. G., and Peterson, W. H., 1926, The fermentation of cellulose by thermophilic bacteria, J. Agric. Sci. 16:1–17.Google Scholar
  152. Walker, G. T., 1968, Metabolism of the reserve polysaccharide of Streptococcus mitis: some properties of a pullulanase, Biochem. J. 108:33–40.PubMedGoogle Scholar
  153. Wang, D. I. C., Bioic, I., Fang, H. -Y., and Wang, S. -D., 1979, Direct microbiological conversion of cellulosic biomass to ethanol, in: Proceeding of the Third Annual Biomass Energy Systems Conference, NTIS, Springfield, VA, p. 61.Google Scholar
  154. Whelan, W. J., 1971, Enzymic explorations of the structures of starch and glycogen. The fourth CIBA medal lecture, Biochem. J. 122:609–622.PubMedGoogle Scholar
  155. Whelan, W. J., and Nasr, H., 1951, The amylase of Clostridium butyricum, Biochem. J. 48:416–422.PubMedGoogle Scholar
  156. Wu, J. H. D., and Demain, A. L., 1985, Purification of the extracellular cellulase system of C. thermocellum, Am. Soc. Microbiol., Ann. Meet. Abstr., p. 248.Google Scholar
  157. Wuensch, E., 1963, Synthesis of proline-peptides. II. collagenase substrates, Z. Physiol. Chem. 332:295–299.Google Scholar
  158. Wuensch, E., and Heidrich, H.-G., 1963, Determination of collagenase, Z. Physiol. Chem. 333:149–151.Google Scholar
  159. Yagisawa, S., Morita, F., Nagai, Y., Noda, H., and Ogura, Y., 1965, Kinetic studies on the action of collagenase, J. Biochem. 58:407–416.PubMedGoogle Scholar
  160. Yoshida, E., and Noda, H., 1965, Isolation and characterization of collagenases I and II from Clostridium histolyticum, Biochem. Biophys. Acta 105:562–574.Google Scholar
  161. Zeikus, J. G., and Saha, B. C., 1989, U.S. Patent 4,814,267.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Badal C. Saha
    • 1
  • Raphael Lamed
    • 2
  • J. Gregory Zeikus
    • 1
  1. 1.Michigan Biotechnology InstituteLansingUSA
  2. 2.Center for Biotechnology, George S. Wise Faculty of Life SciencesTel Aviv UniversityRamat AvivIsrael

Personalised recommendations