Clostridia pp 145-191 | Cite as

Acetogenic and Acid-Producing Clostridia

  • Lars G. Ljungdahl
  • Jeroen Hugenholtz
  • Juergen Wiegel
Part of the Biotechnology Handbooks book series (BTHA, volume 3)


Clostridia degrade a wide variety of organic compounds to mixtures of products that include acids, alcohols, CO2, and H2. The most commonly formed acids are acetate, propionate, and butyrate, but formate, lactate, succinate, and caproate are also observed as products. In addition, Clostridia that ferment amino acids produce valerate, isovalerate, isobutyrate, and other similar acids. Here we review Clostridia that form acids as the only or most prominent products. We have excluded Clostridia that form acids in addition to solvents such as ethanol, acetone, and butanol (see Chapter 4). However, it should be noted that some Clostridia can be manipulated physiologically to form mainly acids or solvents. Typical examples of such bacteria are C. thermosaccharolyticum, C. thermocellum, C. thermohydrosulfuricum, C. saccharolyticum, and C. acetobutylicum.


Formate Dehydrogenase Acetic Acid Production Acetogenic Bacterium Acetate Synthesis Carbon Monoxide Dehydrogenase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, M. W. W., and Mortenson, L. E., 1985, Mo reductases: Nitrate reductase and formate dehydrogenase, in: Molybdenum Enzymes (T. G. Spiro, ed.), John Wiley and Sons, New York, pp. 519–593.Google Scholar
  2. Adamse, A. D., 1980, New isolation of Clostridium aceticum (Wieringa), Antonie van Leeuwenhoek J. Microbiol Serol. 46:523–531.Google Scholar
  3. Akedo, M., Cooney, C. L., Sinskey, A. J., 1983, Direct evidence for lactate-acrylate interconversion in Clostridium propionicum, Abstr. Ann. Meet. Am. Soc. Microbiol., p. 240.Google Scholar
  4. Andreesen, J. R., Gottschalk, G., and Schlegel, H. G., 1970, Clostridium formicoaceticum nov. spec. isolation, description, and distinction from C. aceticum and C. thermoaceticum, Arch. Mikrobiol. 72:154–174.PubMedGoogle Scholar
  5. Andreesen, J. R., Schaupp, A., Neurauter, C., Brown, A., and Ljungdahl, L. G., 1973, Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: Effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J. Bacteriol. 114:743 – 751.PubMedGoogle Scholar
  6. Andreesen, J. R., Zindel, U., and Dürre, P., 1985, Clostridium cylindrosporum (ex Barker and Beck 1942) nom. rev, Int. J. Syst. Bacteriol. 35:206–208.Google Scholar
  7. Bache, R., and Pfennig, N., 1981, Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields, Arch. Microbiol. 130:255–261.Google Scholar
  8. Baker, J. J., and Stadtman, T. C., 1981, Amino mutases, in: B 12, Vol. 2 (D. Dolphin, ed.), John Wiley and Sons, New York, pp. 203–232.Google Scholar
  9. Balch, W. E., Schoberth, S., Tanner, R. S., and Wolfe, R. S. 1977, Acetobacterium a new genus of hydrogen-oxidizing, carbon dioxide-reducing, anaerobic bacteria, Int. J. Syst. Bacteriol. 27:355–361.Google Scholar
  10. Barker, H. A., 1939, The use of glutamic acid for the isolation and identification of Clostridium cochlearium and Cl. tetanomorphum, Arch. Mikrobiol. 10:376–384.Google Scholar
  11. Barker, H. A., 1961, Fermentations of nitrogenous organic compounds, in: The Bacteria, Vol. 2, Metabolism (I. C. Gunsalus and R. Y. Stainer, eds.), Academic Press, New York, pp. 151–207.Google Scholar
  12. Barker, H. A., 1976, Glutamate fermentation and the discovery of B12 coenzymes, in: Reflections on Biochemistry (A. Romberg, B. L. Horecker, L. Cornudella, and J. Oro., eds.), Pergamon Press, New York, p. 75.Google Scholar
  13. Barker, H. A., 1981, Amino acid degradation of anaerobic bacteria, Ann. Rev. Biochem. 50:23–40.PubMedGoogle Scholar
  14. Barker, H. A., and Beck, J. V., 1942, Clostridium acidiurici and Clostridium cylindrosporum, organisms fermenting uric acid and some other purines, J. Bacteriol. 43:291–304.PubMedGoogle Scholar
  15. Barker, H. A., and Kamen, M. D., 1945, Carbon dioxide utilization in the synthesis of acetic acid by Clostridium thermoaceticum, Proc. Natl. Acad. Sci. USA 31:219–225.PubMedGoogle Scholar
  16. Barker, H. A., and Taha, S. M., 1942, Clostridium kluyveri, an organism concerned in the formation of caproic acid from ethyl alcohol, J. Bacteriol. 43:347–363.PubMedGoogle Scholar
  17. Baronowsky, J. J., Schreurs, W. J. A., Kaskhet, E. R., 1984, Uncoupling by acetic acid limits growth and acetogenesis by Clostridium thermoaceticum, Appl. Env. Microbiol. 48:1134–1139.Google Scholar
  18. Benner, R., Maccubin, A. E., and Hodson, R. E., 1984, Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora, Appl. Env. Microbiol. 47:998–1004.Google Scholar
  19. Braun, M., Schoberth, S., and Gottschalk, G., 1979, Enumeration of bacteria forming acetate from H2 and CO2 in anaerobic habitats, Arch. Microbiol. 120:201–204.PubMedGoogle Scholar
  20. Braun, M., Mayer, F., and Gottschalk, G., 1981, Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide, Arch. Microbiol. 128:288–293.PubMedGoogle Scholar
  21. Breznak, J. A., Switzer, J. M., and Seitz, H. J., 1988, Sporomusa termitida sp. nov., and H2/CO2-utilizing acetogen isolated from termites, Arch. Microbiol. 150:282–288.Google Scholar
  22. Bryant, M. P., and Burkey, L. A., 1956, The characteristics of lactate-fermenting sporeforming anaerobes from silage, J. Bacteriol. 71:43–46.PubMedGoogle Scholar
  23. Bryson, M. F., and Drake, H. L., 1988, A reevaluation of the metabolic potential of Clostridium formicoaceticum, Abstr. Annu. Meet. Am. Soc. Microbiol. 1–107, p. 198.Google Scholar
  24. Buckel, W., 1980, Analysis of the fermentation pathways of Clostridia using double labeled glutamate, Arch. Microbiol. 127:167–169.PubMedGoogle Scholar
  25. Busche, R. M., 1985a, Acetic acid manufacture-fermentation alternatives, in: Biotechnology Applications and Research (P. N. Cheremisinoff and R. P. Oulette, P., eds.), Technicon, Lancaster, PA, pp. 88–102.Google Scholar
  26. Busche, R. M., 1985b, The business of biomass, Biotechnol. Progr. 1:165–180.Google Scholar
  27. Cardon, B. P., and Barker, H. A., 1947, Amino acid fermentations by Clostridium propionicum and Diplococcus glycinophilus, Arch. Biochem. 12:165–180.Google Scholar
  28. Cato, E. P., and Salmon, C. W., 1976, Transfer of Bacteroides clostridiiformis subsp. clostridiiformis (Burri and Ankersmit) Holdeman and Moore and Bacteroides clostridiiformis subsp. girans (Prevot) Holdeman and Moore to the genus Clostridium as Clostridium clostridiiforme (Burri and Ankersmit) comb. nov. Emendation of description and designation of neotype strain, Int. J. Syst. Bacteriol. 26:205–211.Google Scholar
  29. Cato, E. P., Holdeman, L. V., and Moore, W. E. C., 1982, Clostridium perenne and Clostridium paraperfringens later subjective synonyms of Clostridium barati, Int. J. Syst. Bacteriol. 32:77–81.Google Scholar
  30. Cato, E. P., George, W. L., and Finegold, S. M., 1986, Genus Clostridium Prazmowski, 1980, in: Bergey’s Manual of Systematic Bacteriology, Vol. 2 (P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1141–1200.Google Scholar
  31. Champion, A. B., and Rabinowitz, J. C., 1977, Ferredoxin and formyltetrahydrofolate synthetase comparative studies with Clostridium acidiurici and Clostridium cylindrosporum, and a newly isolated anaerobic uric acid-fermenting strain, J. Bacteriol. 132:1003–1020.PubMedGoogle Scholar
  32. Chollar, B. H., 1984, Federal Highway Administration research on calcium magnesium acetate: An alternative deicer, Public Roads 47:113–118.Google Scholar
  33. Clark, J. E., and Ljungdahl, L. G., 1984, Purification and properties of 5,10-methylenetetra-hydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum, J. Biol. Chem. 259:10845–10849.PubMedGoogle Scholar
  34. Clark, J. E., Ragsdale, S. W., Ljungdahl, L. G., and Wiegel, J., 1982, Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum, J. Bacteriol. 151:507–509.PubMedGoogle Scholar
  35. Clyde, R. A., 1983, Fiber Fermenter, U.S. Patent 4,407,954.Google Scholar
  36. Colberg, P. J., and Young, L. Y., 1985a, Anaerobic degradation of soluble fractions of [14C-lignin] lignocellulose, Appl. Env. Microbiol. 49:345–349.Google Scholar
  37. Colberg, P. J., and Young, L. Y., 1985b, Aromatic and volatile acid intermediates observed during anaerobic metabolism of lignin-derived oligomers, Appl. Env. Microbiol. 49:350–358.Google Scholar
  38. Cornish-Frazer, A., and Young, L. Y., 1985, A gram-negative anaerobic bacterium that utilizes O-methyl substituents of aromatic acids. Appl. Env. Microbiol. 49:1345–1347.Google Scholar
  39. Costilow, R. N., 1977, Selenium requirement for the growth of Clostridium sporogenes with glycine as the oxidant in Stickland reaction, J. Bacteriol. 131:366–368.PubMedGoogle Scholar
  40. Cummins, C. S., and Johnson, J. L., 1971, Taxonomy of the Clostridia: Cell-wall composition and DNA homologies in Clostridium butyricum and other butyric acid-producing Clostridia, J. Gen. Microbiol. 67:33–46.Google Scholar
  41. Daniel, S. L., and Drake, H. L., 1988, Acetogenesis from methoxylated aromatic acids by Clostridium thermoaceticum, Abstr. Annu. Meet. Am. Soc. Microbiol. 1–105, p. 198.Google Scholar
  42. Diekert, G. B., and Thauer, R. K., 1978, Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum, J. Bacteriol. 136:597–606.PubMedGoogle Scholar
  43. Diekert, G. B., Schräder, E., and Harder, W., 1986, Energetics of CO formation and CO oxidation in cell suspensions of Acetobacterium woodii, Arch. Microbiol. 144:386–392.Google Scholar
  44. Doelle, H. W., 1975, Bacterial Metabolism, 2nd ed., Academic Press, New York.Google Scholar
  45. Dorn, M., Andreesen, J. R., and Gottschalk, G., 1978a, Fermentation of fumarate and L-malate by Clostridium formicoaceticum, J. Bacteriol. 133:26–32.PubMedGoogle Scholar
  46. Dorn, M., Andreesen, J. R., and Gottschalk, G., 1978b, Fumarate reductase of Clostridium formicoaceticum, a peripheral membrane protein, Arch. Microbiol. 119:7–11.PubMedGoogle Scholar
  47. Drake, H. L., 1982, Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum, J. Bacteriol. 150:702–709.PubMedGoogle Scholar
  48. Drake, H. L., Hu, S.-I., Wood, H. G., 1981, Purification of five components from Clostridium thermoaceticum which catalyze synthesis of acetate from pyruvate and methyltetrahydro-folate. Properties of phosphotransacetylase, J. Biol. Chem. 256:11137–11144.PubMedGoogle Scholar
  49. Duine, J. A., Frank Izn, J., Jongejan, J. A., and Dijkstra, M., 1984, Enzymology of the bacterial methanol step, in: Microbial Growth on C 1 Compounds (R. L. Crawford, and R. S. Hanson, eds.) Am. Soc. Microbiol., Washington, D.C., pp. 91–96.Google Scholar
  50. Dürre, P., and Andreesen, J. R., 1982a, Pathway of carbon dioxide reduction to acetate without a net energy requirement in Clostridium purinolyticum,. FEMS Microbiol. Lett. 15: 51–56.Google Scholar
  51. Dürre, P., and Andreesen, J. R., 1982b, Anaerobic degradation of uric acid via pyrimidine derivatives by selenium-starved cells of Clostridium purinolyticum,. Arch. Microbiol. 131:255 – 260.PubMedGoogle Scholar
  52. Dürre, P., and Andreesen, J. R., 1982c, Selenium dependent growth and glycine fermentation by Clostridium purinolyticum, J. Gen. Microbiol. 128:1457–1466.PubMedGoogle Scholar
  53. Dürre, P., and Andreesen, J. R., 1983, Purine and glycine metabolism by purinolytic Clostridia, J. Bacteriol. 154:192–199.PubMedGoogle Scholar
  54. Dürre, P., Andersch, W., and Andreesen, J. R., 1981, Isolation and characterization of an adenine-utilizing anaerobic sporeformer, Clostridium purinolyticum sp. nov., Int. J. Syst. Bacteriol. 31:184–194.Google Scholar
  55. Elliott, J. I., and Ljungdahl, L. G., 1982, Isolation and characterization of an Fe8-S8 ferredox-in (ferredoxin II) from Clostridium thermoaceticum, J. Bacteriol. 151:328–333.PubMedGoogle Scholar
  56. Elliott, J. I., Yang, S.-S., Ljungdahl, L. G., Travis, J., and Reilly, C. F., 1982, Complete amino acid sequence of the 4Fe-4S thermostable ferredoxin from Clostridium thermoaceticum, Biochemistry 21:3294–3298.PubMedGoogle Scholar
  57. Elsden, S. R., and Hilton, M. G., 1978, Volatile acid production from threonine, valine, leucine, and isoleucine by Clostridia, Arch. Microbiol. 117:165–172.PubMedGoogle Scholar
  58. Elsden, S. R. and Hilton, M. G., 1979, Amino acid utilization patterns in clostridial taxonomy, Arch. Microbiol. 123:137–141.PubMedGoogle Scholar
  59. Fontaine, F. E., Peterson, W. H., McCoy, E., and Johnson, M. J., 1942, A new type of glucose fermentation by Clostridium thermoaceticum n. sp., J. Bacteriol. 43:701–715.PubMedGoogle Scholar
  60. Fuchs, G., 1986, CO2 fixation in acetogenic bacteria: Variations on a theme, FEMS Microbiol. Rev. 39:181–213.Google Scholar
  61. Gibson, T., Stirling, A. C., Keddi, R. M., Rosenberger, R. F., 1958, Bacteriological changes in silage made at controlled temperatures, J. Gen. Microbiol. 19:112–119.PubMedGoogle Scholar
  62. Gottschalk, G., 1985, Bacterial Metabolism, 2nd. ed., Springer-Verlag, New York.Google Scholar
  63. Gottschalk, G., Andreesen, J. R., and Hippe, H., 1981, The genus Clostridium (nonmedical aspects), in: The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria (M. P. Starr, H. Stolp, H. G. Trüper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 1767–1803.Google Scholar
  64. Gottwald, M., Andreesen, J. R., LeGall, J., and Ljungdahl, L. G., 1975, Presence of cytochromes and menaquinone in Clostridium formicoaceticum and Clostridium thermoaceticum, J. Bacteriol. 122:325–328.PubMedGoogle Scholar
  65. Goudkov, A. V. and Sharp, M. E., 1966, A preliminary investigation of the importance of Clostridia in the production of rancid flavor in cheddar cheese, J. Dairy Res. 33:139–149.Google Scholar
  66. Han, E. Y., 1988, Purification and Characterization of methylenetetrahydrofolate reductase from Clostridium thermoaceticum, Thesis, University of Georgia, Athens.Google Scholar
  67. Hardman, J. K., and Stadtman, T. C., 1960a, Metabolism of ω-amino acids. I. Fermentation of γ-aminobutyric acid by Clostridium aminobutyricum n. sp., J. Bacteriol. 79:544–548.PubMedGoogle Scholar
  68. Hardman, J. K., and Stadtman, T. C., 1960b, Metabolism of ω-amino acids. II. Fermentation of δ-aminovaleric acid by Clostridium aminovalericum, J. Bacteriol. 79:549–552.PubMedGoogle Scholar
  69. Hardman, J. K., and Stadtman, T. C., 1963, Metabolism of ω-amino acids. IV. γ-Aminobuty-rate fermentation by cell-free extracts of Clostridium aminobutyricum, J. Biol.Chem. 238:2088–2093.PubMedGoogle Scholar
  70. Hartmanis, M. G. N., 1987, Butyrate kinase from Clostridium acetobutylicum, J. Biol. Chem. 262:617–621.PubMedGoogle Scholar
  71. Himes, R. H., and Harmony, J. A. K., 1973, Formyltetrahydrofolate synthetase, CRC Crit. Rev. Biochem. 1:501–535.PubMedGoogle Scholar
  72. Holdeman, L. V., Cato, E. P., and Moore, W. E. C., 1977, Anaerobe Laboratory Manual, 4th. ed., Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg, pp. 1–156.Google Scholar
  73. Hu, S.-I., Drake, H. L., and Wood, H. G., 1982, Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate and coenzyme A by enzymes from Clostridium thermoaceticum, J. Bacteriol. 149:440–448.PubMedGoogle Scholar
  74. Hu, S.-I., Pezacka, E. and Wood, H. G., 1984, Acetate synthesis from carbon monoxide by Clostridium thermoaceticum, Purification of the corrinoid protein, J. Biol. Chem. 259:8892–8897.PubMedGoogle Scholar
  75. Hugenholtz, J., Ivey, D. M., and Ljungdahl, L. G., 1987, Carbon monoxide-driven electron transport in Clostridium thermoautotrophicum membranes, J. Bacteriol. 169:5845–5847.PubMedGoogle Scholar
  76. Hugenholtz, J., and Ljungdahl, L. G., 1988, The bioenergetics of Clostridium thermoautotrophicum, Abstr. Ann. Meet. Am. Soc. Microbiol. K153, p. 232.Google Scholar
  77. Iannotti, E. L., Kafkewitz, D., Wolin, M. J., and Bryant, M. P., 1973, Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: Changes caused by interspecies transfer of H2, J. Bacteriol. 114:1231–1249.PubMedGoogle Scholar
  78. Imhoff, D., and Andreesen, J. R., 1979, Nicotinic acid hydroxylase from Clostridium barkeri: Selenium-dependent formation of active enzyme, FEMS Microbiol. Lett. 5:155–158.Google Scholar
  79. Ivey, D. M., 1987, Generation of energy during CO2 fixation in acetogenic bacteria, Dissertation, University of Georgia, Athens.Google Scholar
  80. Ivey, D. M., and Ljungdahl, L. G., 1986, Purification and characterization of the F1-ATPase from Clostridium thermoaceticum, J. Bacteriol. 165:252–257.PubMedGoogle Scholar
  81. Ivey, D. M., and Ljungdahl, L. G., 1989, Purification and reconstitution into proteoliposomes of the F1F0-ATPase from Clostridium thermoautotrophicum (submitted for publication).Google Scholar
  82. Johns, A. T., 1952, The mechanism of propionic acid formation by Clostridium propionicum, J. Gen. Microbiol 6:123–127.PubMedGoogle Scholar
  83. Jordan, D. C., and McNicoll, P. J., 1979, A new nitrogen-fixing Clostridium species from a high arctic ecosystem, Can. J. Microbiol. 25:947–948.PubMedGoogle Scholar
  84. Jungermann, K., Thauer, R. K., Leimenstou, G., and Decker, K., 1973, Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia, Biochim. Biophys. Acta 305:268–280.PubMedGoogle Scholar
  85. Kaneuchi, C., Benno, Y., and Mitsuoka, T., 1976a, Clostridium coccoides, a new species from the feces of mice, Int. J. Syst. Bacteriol. 26:482–486.Google Scholar
  86. Kaneuchi, C., Watanabe, K., Terada, A., Benno, Y., and Mitsuoka, T., 1976b, Taxonomic study of Bacteroides clostridiiformis subsp. Clostridiiformis (Burri and Ankersmit) Holdeman and Moore and of related organisms: Proposal of Clostridium clostridiiformis (Burri and Ankersmit) comb. nov. and Clostridium symbiosum (Stevens) comb, nov., Int. J. Syst. Bacteriol. 26:195–204.Google Scholar
  87. Kaneuchi, C., Miyazato, T., Shinjo, T., and Mitsuoka, T., 1979, Taxonomic study of helically coiled, spore forming anaerobes isolated from the intestines of humans and other animals: Clostridium cocleatum sp. nov. and Clostridium spiroforme sp. nov., Int. J. Syst. Bacteriol. 29:1–12.Google Scholar
  88. Karlsson, J. L., and Barker, H. A., 1949, Tracer experiments on the mechanism of uric acid decomposition and acetic acid synthesis by Clostridium acidi-urici, J. Biol. Chem. 178:891–902.PubMedGoogle Scholar
  89. Keller, F. A., Ganoung, J. S., Luenser, S. J., 1985, Mutant strain of Clostridium thermoaceticum useful for the preparation of acetic acid, U.S. Patent 4,513,084.Google Scholar
  90. Kellermeyer, R. W., Allen, S. H. G., Stjernholm, R., and Wood, H. G., 1964, Methylmalonyl isomerase. IV. Purification and properties of the enzyme from Propionibacteria, J. Biol. Chem. 239:2562–2569.PubMedGoogle Scholar
  91. Kenealy, W. R. and Waselefsky, D. M., 1985, Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate, Arch. Microbiol 141:187–194.Google Scholar
  92. Kerby, R., and Zeikus, J. G., 1983, Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source, Curr. Microbiol. 8:27–30.Google Scholar
  93. Kirk, T. K., and Farrell, R. L., 1987, Enzymatic “Combustion”: The microbial degradation of lignin, Ann. Rev. Microbiol. 41:465–505.Google Scholar
  94. Krumholz, L. R., and Bryant, M. P., 1985, Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate, Int. J. Syst. Bacteriol. 35:454–456.Google Scholar
  95. Kuchta, R. D., and Abeles, R. H., 1985, Lactate reduction in Clostridium propionicum, Purification and properties of lactyl-CoA dehydratase, J. Biol Chem. 260:13181–13189.PubMedGoogle Scholar
  96. Laanbroek, H. J., Smit, A. J., Klein Nulend, G., and Veldkamp, H., 1979, Competition for L-glutamate between specialized and versatile Clostridium species, Arch. Microbiol 120:61 – 66.PubMedGoogle Scholar
  97. Lajoie, S. F., Bank, S., Miller, T. L., Wolin, M. J., 1988, Acetate production from hydrogen and [13C] carbon dioxide by the microflora of human feces, Appl. Env. Microbiol. 54:2723–2727.Google Scholar
  98. Le Ruyet, P., Dubourguier, G., Albagnac, G., and Prensier, G., 1985, Characterization of Clostridium thermolacticum sp. nov., a hydrolytic thermophilic anaerobe producing high amounts oflactate, Appl. Microbiol. 6, 196–202.Google Scholar
  99. Ljungdahl, L. G., 1983, Formation of acetate using homoacetate fermenting anaerobic bacteria, in: Organic Chemicals from Biomass (D. L. Wise, ed.), Benjamin Cummings, Menlo Park, CA, pp. 219–248.Google Scholar
  100. Ljungdahl, L. G., 1984, Other functions of folates, in: Folates and Pterins, Vol. 1, Chemistry and Biochemistry of Folates (R. L. Blakley and S.J. Benkovic, eds.), John Wiley and Sons, New York, pp. 555–579.Google Scholar
  101. Ljungdahl, L. G., 1986, The autotrophic pathway of acetate synthesis in acetogenic bacteria, Ann. Rev. Microbiol. 40:415–450.Google Scholar
  102. Ljungdahl, L. G., and Eriksson, K. E., 1985, Ecology of microbial cellulose degradation, Adv. Microbial Ecol. 8:237–299.Google Scholar
  103. Ljungdahl, L. G., and Wiegel, J., 1986, Working with anaerobic bacteria, in: Manual of Industrial Microbiology and Biotechnology (A. L. Demain, and N. A. Solomon, eds.), Am. Soc. Microbiol., Washington, D.C., pp. 84–96.Google Scholar
  104. Ljungdahl, L. G., and Wood, H. G., 1969, Total synthesis of acetate from CO2 by heterotrophic bacteria, Ann. Rev. Microbiol. 23:515–538.Google Scholar
  105. Ljungdahl, L. G., and Wood, H. G., 1982, Acetate biosynthesis, in: B 12, Vol. 2 (D. Dolphin, ed), John Wiley and Sons, New York, pp. 165–202.Google Scholar
  106. Ljungdahl, L. G., Irion, E., and Wood, H. G., 1966, Role of corrinoids in the total synthesis of acetate from CO2 by Clostridium thermoaceticum, Fed. Proc. 25:1642–1648.PubMedGoogle Scholar
  107. Ljungdahl, L. G., O’Brien, W. E., Moore, M. R., and Liu, M.-T., 1980, Methylenetetrahydro-folate dehydrogenase from Clostridium formicoaceticum and methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (combined) from C. thermoaceticum, Methods Enzymol. 66:599–609.Google Scholar
  108. Ljungdahl, L. G., Carreira, L. H., Garrison, R. J., Rabek, N. E., and Wiegel, J., 1985, Comparison of three thermophilic acetogenic bacteria for production of calcium magnesium acetate, Biotechnol. Bioeng. Symp. 15:207–223.Google Scholar
  109. Ljungdahl, L. G., Carreira, L. H., Garrison, R. J., Rabek, N. E., Gunter, L. F., and Wiegel, J., 1986, CMA manufacture [II]. Improved bacterial strain for acetate production, U.S. Dept. of Transportation, Federal Highway Administration Report No. FHWA/ RD-86/117, available from the National Technical Information Service, Springfield, VA 22161.Google Scholar
  110. Lovell, C. R., Przybyla, A., and Ljungdahl, L. G., 1988, Cloning and expression in Escherichia coli of the Clostridium thermoaceticum gene encoding thermostable formyltetrahydrofolate synthetase, Arch. Microbiol. 149:280–285.PubMedGoogle Scholar
  111. Lovitt, R. W., Kell, D. B., and Morris, J. G., 1986, Proline reduction by Clostridium sporogenes is coupled to vectorial proton ejection, FEMS Microbiol. Lett. 36:269–273.Google Scholar
  112. Lundie, L. L., Jr., and Drake, H. L., 1984, Development of a minimally defined medium for the acetogen Clostridium thermoaceticum, J. Bacteriol. 159:700–703.PubMedGoogle Scholar
  113. MacDonald, I. A., Bokkenheuser, V. D., Winter, J., McLernon, A. M., and Mosbach, E. H., 1983, Degradation of steroids in the human gut, J. Lipid Res. 24:675–700.PubMedGoogle Scholar
  114. Macy, J. M., Ljungdahl, L. G., and Gottschalk, G., 1978, Pathway of succinate and propionate formation in Bacteroides fragilis, J. Bacteriol., 134:84–91.PubMedGoogle Scholar
  115. Mah, R. H., 1981, The methanogenic bacteria, their ecology and physiology, in: Trends in the Biology of Fermentation for Fuels and Chemicals (A. Hollaender, ed.), Plenum Press, New York, pp. 357–374.Google Scholar
  116. Martin, D. R., Lundie, L. L., Kellum, R., and Drake, H. L., 1983, Carbon monoxide-dependent evolution of hydrogen by the homoacetate-fermenting bacterium Clostridium thermoaceticum, Curr. Microbiol. 8:337–340.Google Scholar
  117. Mallette, M. F., Reece, P., and Dawes, E. A., 1974, Culture of Clostridium pasteurianum in defined medium and growth as a function of sulfate concentration, Appl. Microbiol. 28:999–1003.PubMedGoogle Scholar
  118. Mayer, F., Ivey, D. M., and Ljungdahl, L. G., 1986, Macromolecular organization of F1-ATPase isolated from Clostridium thermoaceticum as revealed by electron microscopy, J. Bacteriol. 166:1128–1130.PubMedGoogle Scholar
  119. Mead, G. C., 1971, The amino acid-fermenting Clostridia, J. Gen. Microbiol. 67:47–56.PubMedGoogle Scholar
  120. Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 41:445–502.PubMedGoogle Scholar
  121. Möller, B., Ossmer, R., Howard, B. H., Gottschalk, G., and Hippe, H., 1984, Sporomusa, a new genus of Gram negative anaerobic bacteria including Sporomusa spheroides spec. nov. and Sporomusa ovata, spec. nov., Arch. Microbiol. 139:388–396.Google Scholar
  122. Mortenson, L. E., 1966, Components of cell-free extracts of Clostridium pasteurianum required for ATP-dependent H2 evolution from dithionite and for N2 fixation, Biochim. Biophys. Acta 127:18–25.PubMedGoogle Scholar
  123. Mortenson, L. E., and Chen, J. S., 1974, Hydrogenase, in: Microbial Iron Metabolism: A Comprehensive Treatise (J. B. Neilands, ed.), Academic Press, New York, pp. 231–282.Google Scholar
  124. Munoz, E., 1982, Polymorphism and conformational dynamics of F2 ATPases from bacterial membranes, a model for the regulation of these enzymes on the basis of molecular plasticity, Biochim. Biophys. Acta 650:233–265.PubMedGoogle Scholar
  125. Muth, W. L., and Costilow, R. N., 1974, Ornithine cyclase (deaminating), II. Properties of the homogeneous enzyme, J. Biol. Chem. 249:7457–7462.PubMedGoogle Scholar
  126. Nakamura, S., Shimamura, T., Hayase, M., and Nishida, S., 1973, Numerical taxonomy of saccharolytic Clostridia, particularly Clostridium perfringens-like strains: Description of Clostridium absonum sp. n. and Clostridiumparaperfringens, Int. J. Syst. Bacteriol. 23:419–429.Google Scholar
  127. Nomura, Y., Iwahara, M., and Hongo, M., 1988, Acetic acid production by an electrodialysis fermentation method with a computerized control system, Appl. Env. Microbiol. 54:137–142.Google Scholar
  128. O’Brien, W. E., and Ljungdahl, L. G., 1972, Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum, J. Bacteriol. 109:626–632.PubMedGoogle Scholar
  129. Ohwaki, K., and Hungate, R. E., 1977, Hydrogen utilization by Clostridia in sewage sludge, Appl. Env. Microbiol. 33:1270–1274.Google Scholar
  130. Oren, A., 1983, Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles, Arch. Microbiol. 136:42–48.Google Scholar
  131. Pecher, A., Blaschkowski, H. P., Knappe, K., and Bock, A., 1982, Expression of pyruvate formate-lyase of Escherichia coli from the cloned structural gene, Arch. Microbiol. 132:365 – 371.PubMedGoogle Scholar
  132. Pezacka, E., and Wood, H. G., 1984, Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria, Proc. Natl. Acad. Sci. USA 81:6261–6265.PubMedGoogle Scholar
  133. Pezacka, E., and Wood, H. G., 1986, The autotrophic pathway of acetogenic bacteria: Role of CO dehydrogenase disulfide reductase, J. Biol. Chem. 261:1609–1615.PubMedGoogle Scholar
  134. Pezacka, E., and Wood, H. G., 1988, Acetyl-CoA pathway of autotrophic growth: Identification of the methyl-binding site of the CO-dehydrogenase, J. Biol. Chem. 263:16000–16006.PubMedGoogle Scholar
  135. Poston, J. M., Kuratomi, K., and Stadtman, E. R., 1966, The conversion of carbon dioxide to acetate. 1. The use of cobalt-methylcobalamin as a source of methyl groups for the synthesis of acetate by cell-free extracts of Clostridium thermoaceticum, J. Biol. Chem. 241:4209–4216.PubMedGoogle Scholar
  136. Prévot, A. R. and Zimmès-Chaverou, J., 1947, Etude d’une nouvelle espece anaerobic de Cote d’Ivoire: Inflabilis mangenotii, Ann. Inst. Pasteur (Paris) 73:602–604.Google Scholar
  137. Prins, R. A. and Lankhorst, A., 1977, Synthesis of acetate from CO2 in the cecum of some rodents, FEMS Microbiol. Lett. 1:255–258.Google Scholar
  138. Rabinowitz, J. C., 1963, Intermediates in purine breakdown, Methods Enzymol. 6:703–713.Google Scholar
  139. Raeburn, S., and Rabinowitz, J. C., 1971, Pyruvate:ferredoxin oxidoreductase. II. Characteristics of the forward and reverse reactions and properties of the enzyme, Arch. Biochem. Biophys. 146:21–33.PubMedGoogle Scholar
  140. Ragsdale, S. W., and Wood, H. G., 1985, Acetate biosynthesis by acetogenic bacteria. Evidence that carbon monoxide dehydrogenase is the condensing enzyme that catalyzes the final steps in the synthesis, J. Biol.Chem. 260:3970–3977.PubMedGoogle Scholar
  141. Ragsdale, S. W., Clark, J. E., Ljungdahl, L. G., Lundie, L. L., and Drake, H. L., 1983a, Properties of purified carbon monoxide dehydrogenase from Clostridium thermoaceticum, a nickel, iron-sulfur protein, J. Biol Chem. 258:2364–2369.PubMedGoogle Scholar
  142. Ragsdale, S. W., Ljungdahl, L. G., and DerVartanian, D. V., 1983b, Isolation of carbon monoxide dehydrogenase from Acetobacterium woodii and comparison of its properties with those of the Clostridium thermoaceticum enzyme, J. Bacteriol. 255:1224–1237.Google Scholar
  143. Ragsdale, S. W., Ljungdahl, L. G., and DerVartanian, D.V. 1983c, 13C and 61Ni isotope substitutions confirm the presence of a nickel (Il)-carbon species in acetogenic CO dehydrogenase, Biochem. Biophys. Res. Commun. 115:658–665.PubMedGoogle Scholar
  144. Ragsdale, S. W., Wood, H. G., and Antholine, W. E., 1985, Evidence that an iron-nickel-carbon complex is formed by reaction of CO with the CO dehydrogenase from Clostridium thermoaceticum, Proc. Natl. Acad. Sci. USA 82:6811–6814.Google Scholar
  145. Ragsdale, S. W., Lindahl, P. A., and Miinck, E., 1987, Mössbauer, EPR, and optical studies of the corrinoid/iron sulfur protein involved in the synthesis of acetyl coenzyme A by Clostridium thermoaceticum, J. Biol. Chem. 262:14289–14297.PubMedGoogle Scholar
  146. Reed, W. M., 1985, Production of organic acids by a continuous fermentation process, U.S. Patent 4,506,012.Google Scholar
  147. Reed, W. M., and Bogdan, M. E., 1985, Application of cell recycling to continuous fermentative acetic acid production, Biotech. Bioeng. Symp. 15:641–647.Google Scholar
  148. Roberts, T. A., and Hobbs, G., 1968, Low temperature growth characteristics of Clostridia, J. Appl. Bacteriol. 31:75–88.PubMedGoogle Scholar
  149. Rogers, P., 1986, Genetics and biochemistry of Clostridium relevant to development of fermentation process, Adv. Appl. Microbiol 31:1–60.Google Scholar
  150. Roux, C., and Bergère, J.-L., 1977, Charactères taxonomiques de Clostridium tyrobutyricum, Ann. Microbiol. (Inst. Pasteur) 128A:267–276.Google Scholar
  151. Savage, M. D., and Drake, H. L., 1986, Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium, J. Bacteriol. 165:315–318.PubMedGoogle Scholar
  152. Schaupp, A., and Ljungdahl, L. G., 1974, Purification and properties of acetate kinase from Clostridium thermoaceticum, Arch. Microbiol. 100:121 – 129.PubMedGoogle Scholar
  153. Schiefer-Ullrich, H., Wagner, R., Dürre, P., and Andreesen, J. R., 1984, Comparative studies on physiology and taxonomy of obligately purinolytic Clostridia, Arch. Microbiol. 138:345–353.PubMedGoogle Scholar
  154. Schink, B., 1984, Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium, Arch. Microbiol. 137:250–255.Google Scholar
  155. Schink, B., and Pfennig, N., 1982, Fermentation of trihydroxybenzenes by Pelobacter acid-igallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium, Arch. Microbiol. 133:195–201.Google Scholar
  156. Schink, B., Ward, J. C., and Zeikus, J. G., 1981, Microbiology of wetwood: Importance of pectin degradation and Clostridium species in living trees, Appl. Env. Microbiol 42:526–532.Google Scholar
  157. Schobert, S., and Gottschalk, G., 1969, Considerations on the energy metabolism of Clostridium kluyveri, Arch. Mikrobiol. 65:318–328.Google Scholar
  158. Schulman, M., Parker, D., Ljungdahl, L. G., and Wood, H. G., 1972, Total synthesis of acetate from CO2. V. Determination by mass analysis of the different types of acetate formed from 13CO2 by heterotrophic bacteria, J. Bacteriol 109:633–644.PubMedGoogle Scholar
  159. Schwartz, R. D. and Keller, F. A., Jr., 1982a, Isolation of a strain of Clostridium thermoaceticum capable of growth and acetic acid production at pH 4.5, Appl. Env. Microbiol 43:117–123.Google Scholar
  160. Schwartz, R. D., and Keller, F. A., Jr., 1982b, Acetic acid production by Clostridium thermoaceticum in pH-controlled batch fermentation at acidic pH, Appl. Env. Microbiol 43:1385–1392.Google Scholar
  161. Seto, B., 1980, Chemical characterization of an alkali-labile bond in the polypeptide of proline reductase from Clostridium sticklandii, J. Biol Chem. 255:5004–5006.PubMedGoogle Scholar
  162. Shanmugasundaram, T., Kumar, G. K., and Wood, H. G., 1988, Involvement of tryptophan residues of the coenzyme A binding site of carbon monoxide dehydrogenase from Clostridium thermoaceticum, Biochemistry 27:6499–6503.PubMedGoogle Scholar
  163. Shimshick, E. J., 1981, Removal of organic acids from aqueous solutions of salts of organic acids by super critical fluids, U.S. Patent 4, 250,331.Google Scholar
  164. Sinskey, A. J., Adedo, M., and Cooney, C. L., 1981, Acrylate Fermentations, in: Trends in the Biology of Fermentations for Fuels and Chemicals, (A. Hollaender, Rabson, R., Rogers, P., A. San Pietro, R. Valentine, and R. Wolfe, eds.), Plenum Press, New York, pp. 473–492.Google Scholar
  165. Sleat, R., and Mah, R. A., 1985, Clostridium populeti sp. nov., a new cellulolytic species from a woody-biomass digestor, Int. J. Syst. Bacteriol. 35:160–163.Google Scholar
  166. Sleat, R., Mah, R. A., and Robinson, R., 1984, Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov., Appl. Env. Microbiol. 48:88–93.Google Scholar
  167. Sleat, R., Mah, R. A., and Robinson, R., 1985, Acetoanaerobium noterae gen. nov., sp. nov; an anaerobic bacterium that forms acetate from H2 and CO2, Int. J. Syst. Bacteriol. 35:10–15.Google Scholar
  168. Smith, L. D. S., 1970, Clostridium oceanicum, sp. n., a spore-forming anaerobe isolated from marine sediments, J. Bacteriol. 103:811–813.PubMedGoogle Scholar
  169. Snyder, M. L., 1936, The serological agglutination of the obligate anaerobes Clostridium paraputrificum (Bienstock) and Clostridium capitovalis (Snyder and Hall), J. Bacteriol. 32:401–410.PubMedGoogle Scholar
  170. Somack, R., and Costilow, R. N., 1973, 2,4-Diaminopentanoic acid C4 dehydrogenase, J. Biol. Chem. 248:385–388.PubMedGoogle Scholar
  171. Sørensen, L. B., 1978, Extrarenal disposal of uric acid, in: Uric Acids (Handbook of Experimental Pharmacology), Vol. 51 (W. N. Kelly and I. M. Weiner, eds.), Springer-Verlap, Berlin, pp. 325–336.Google Scholar
  172. Stadtman, E. R., 1953, The coenzyme A transphorase system in Clostridium kluyveri, J. Biol. Chem. 203:501–512.PubMedGoogle Scholar
  173. Stadtman, E. R., Novelli, G. D., and Lipmann, F., 1951, Coenzyme A function in an acetyl transfer by phosphotransacetylase system, J. Biol Chem. 191:365–376.PubMedGoogle Scholar
  174. Stadtman, E. R., Stadtman, T. C., Pastan, I., and Smith, L. D. S., 1972, Clostridium barkeri sp. n., J. Bacteriol. 110:758–760.PubMedGoogle Scholar
  175. Stadtman, T. C., 1978, Selenium-dependent clostridial glycine reductase, Methods Enzymol. 53:372–382.Google Scholar
  176. Stadtman, T. C., and McClung, L. S., 1957, Clostridium sticklandii nov. spec., J. Bacteriol. 73:218–219.PubMedGoogle Scholar
  177. Stadtman, T. C., Elliott, P., and Tiemann, L., 1958, Studies on the enzymic reduction of amino acids. III. Phosphate esterification coupled with glycine reduction, J. Biol. Chem. 231:961–973.PubMedGoogle Scholar
  178. Stickland, L. H., 1934, Studies in the metabolism of the strict anaerobes (genus Clostridium). I. The chemical reactions by which Cl. sporogenes obtains its energy, Biochem. J. 28:1746–1759.PubMedGoogle Scholar
  179. Sturges, W. S., and Drake, E. T., 1927, A complete description of Clostridium putrefaciens (McBryde), J. Bacteriol. 14:175–179.PubMedGoogle Scholar
  180. Switzer, R. L., 1982, Glutamate mutase, in: B 12, Vol. 2 (D. Dolphin, ed.), John Wiley and Sons, New York, pp. 289–305.Google Scholar
  181. Tanaka, H., and Stadtman, T. C., 1979, Selenium dependent clostridial glycine reductase. Purification and characterization of the two membrane-associated protein components, J. Biol. Chem. 254:447–452.PubMedGoogle Scholar
  182. Tanner, R. S., Stackebrandt, E., Fox, G. E., Gupta, R., Magrum, L.J., and Woese, C. R., 1982, A phylogenetic analysis of anaerobic eubacteria capable of synthesizing acetate from carbon dioxide, Curr. Microbiol. 7:127–132.Google Scholar
  183. Thauer, R. K., 1972, CO2-reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO2 in Clostridium thermoaceticum, FEBS Lett. 27:111–115.PubMedGoogle Scholar
  184. Thauer, R. F., Kirchniawy, F. H., and Jungermann, K. A., 1972, Properties and function of the pyruvate-formate-lyase reaction in Clostridia, Eur. J. Biochem. 27:282–290.PubMedGoogle Scholar
  185. Thauer, R. K., Jungerman, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  186. Thiele, J. H., and Zeikus, J. G., 1988, Control of interspecies electron flow during anaerobic digestion:significance of formate transfer versus hydrogen transfer during syntrophic methanogenesis in flocs, Appl. Env. Microbiol. 54:20–29.Google Scholar
  187. Tschech, A., and Pfennig, N., 1984, Growth yield increase linked to caffeate reduction in Acetobacterium woodii, Arch. Microbiol. 137:163–167.Google Scholar
  188. Twarog, R., and Wolfe, R. S., 1962, Enzymatic phosphorylation of butyrate, J. Biol. Chem. 237:2474–2477.PubMedGoogle Scholar
  189. U.S. International Trade Commission, 1986, Synthetic organic chemicals. United States Production and Sales, USITC Publ. 2009, pp. 209–213.Google Scholar
  190. Uyeda, K., and Rabinowitz, J. C., 1965, Metabolism of formiminoglycine. Glycine for-miminotransferase, J. Biol. Chem. 240:1701 – 1710.PubMedGoogle Scholar
  191. Uyeda, K., and Rabinowitz, J. C., 1967, Metabolism of formiminoglycine. Formiminotetrahy-drofolate cyclodeaminase, J. Biol. Chem. 242:24–31.PubMedGoogle Scholar
  192. Uyeda, K., and Rabinowitz, J. C., 1971, Pyruvate-ferredoxin oxidoreductase. III. Purification and properties of the enzyme, J. Biol. Chem. 245:3111–3119.Google Scholar
  193. Vagelos, P. R., Earl, J. M., and Stadtman, E. R., 1959, Propionic acid metabolism. I. The purification and properties of a acrylyl coenzyme A aminase, J. Biol. Chem. 234:490–497.PubMedGoogle Scholar
  194. Valentine, R. C., and Wolfe, R. S., 1960, Purification and role of phosphotransbutyrylase, J. Biol. Chem. 255:1948–1952.Google Scholar
  195. Van der Meijden, van der Drift, C., and Vogels, G. D., 1984, Methanol conversion in Eubacterium limosum, Arch. Microbiol. 138:360–364.Google Scholar
  196. Van Gylswyk, N. O., Morris, E. J., and Els, H. J., 1980, Sporulation and cell wall structure of Clostridium polysaccharolyticum comb. nov. (Formerly Fusobacterium polysaccharolyticum), J. Gen. Microbiol. 121:491–493.Google Scholar
  197. Veldkamp, H., 1965, Enrichment cultures of procaryotic organisms, in: Methods in Microbiology (J. R. Norris and D. W. Ribbons, eds.), Vol. 3A, Academic Press, London, pp. 305–361.Google Scholar
  198. Vogels, G. D., 1979, The global cycle of methane, Antonie van Leeuwenhoek, J. Microbiol. Serol. 45:347–352.Google Scholar
  199. Vogels, G. D., and van der Drift, C., 1976, Degradations of purines and pyrimidines by microorganisms, Bacteriol. Rev. 40:403–468.PubMedGoogle Scholar
  200. Von Hugo, H., Schoberth, S., Madan, V. K., Gottschalk, G., 1972, Coenzyme specificity by dehydrogenases and fermentation of pyruvate by Clostridia, Arch. Microbiol. 87:189–202.Google Scholar
  201. Waber, J. L., and Wood, H. G., 1979, Mechanism of acetate synthesis from CO2 by Clostridium acidiurici, J. Bacteriol. 140:468–478.PubMedGoogle Scholar
  202. Wachsman, J. T., and Barker, H. A., 1955, Tracer experiments on glutamate fermentation by Clostridium tetanomorphum, J. Biol. Chem. 217:695–702.PubMedGoogle Scholar
  203. Wagner, R., and Andreesen, J. R., 1977, Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation, Arch. Microbiol. 114:219–224.PubMedGoogle Scholar
  204. Wagner, R., and Andreesen, J. R., 1979, Selenium requirement for active xanthine dehydrogenase from Clostridium acidiurici and Clostridium cylindrosporum. Arch. Microbiol. 121:255–260.PubMedGoogle Scholar
  205. Wang, G. and Wang, D., 1984, Elucidation of growth inhibition and acetic acid production by Clostridium thermoaceticum, Appl. Env. Microbiol. 47:294–298.Google Scholar
  206. Whitehead, T. R., and Rabinowitz, J. C., 1986, Cloning and expression in Escherichia coli of the gene for 10-formyltetrahydrofolate synthetase from Clostridium acidiurici (“Clostridium acidiurici”), J. Bacteriol. 167:205–209.PubMedGoogle Scholar
  207. Wiegel, J., and Garrison, R., 1985, Utilization of methanol by Clostridium thermoaceticum, Abstr. Annu. Meet. Am. Soc. Microbiol. 1115, p. 165.Google Scholar
  208. Wiegel, J., and Ljungdahl, L. G., 1986, The importance of thermophilic bacteria in biotechnology, CRC Crit. Rev. Biotechnol. 3:39–108.Google Scholar
  209. Wiegel, J., Braun, M., and Gottschalk, G., 1981, Clostridium thermoautotrophicum species novum, a thermophile producing acetate from molecular hydrogen and carbon dioxide, Curr. Microbiol. 5:255–260.Google Scholar
  210. Wiegel, J., Kuk, S., Kohring, G. W., 1989, Clostridium thermobutyricum, spec. nov. a moderate thermophile isolated from a cellulolytic culture producing butyrate as major product from glucose Int. J. Syst. Bacteriol. 39:199–204.Google Scholar
  211. Wieringa, K. T., 1940, The formation of acetic acid from carbon dioxide and hydrogen by anaerobic spore-forming bacteria, Antonie van Leeuwenhoek, J. Microbiol. Serol 6:251–262.Google Scholar
  212. Winters-Ivey, D. K., 1987, Metabolism of methanol in acetogenic bacteria, Dissertation, Univ. of Georgia, Athens.Google Scholar
  213. Wise, D. L., ed., 1983, Organic Chemicals from Biomass, Benjamin Cummings, Menlo Park, CA.Google Scholar
  214. Wise, D. L., ed., 1983 and 1984, CRC Series in Bioenergy Systems, five volumes entitled: Fuel Gas Systems; Fuel Gas Developments, Liquid Fuel Systems, Liquid Fuel Developments; Bioconversion Systems, CRC, Boca Raton.Google Scholar
  215. Wood, H. G., 1952a, A study of carbon dioxide fixation by mass determination of the types of C13-acetate, J. Biol. Chem. 194:905–931.PubMedGoogle Scholar
  216. Wood, H. G., 1952b, Fermentation of 3,4-C14- and l-C14-labeled glucose by Clostridium thermoaceticum, J. Biol. Chem. 199:579–583.PubMedGoogle Scholar
  217. Wood, H. G., 1982, The discovery of the fixation of CO2 by heterotrophic organisms and metabolism of the propionic acid bacteria, in: Of Oxygen, Fuels, and Living Matter, Part 2 (G. Semenza, ed.), John Wiley and Sons, New York, pp. 173–250.Google Scholar
  218. Wood, H. G., and Kumar, G. K., 1985, Transcarboxylase. Its quaternary structure and the role of the biotinyl subunit in the assembly of the enzyme and in catalysis, Ann. N.Y. Acad. Sci. 447:1–22.PubMedGoogle Scholar
  219. Wood, H. G., O’Brien, W. E., and Michaels, G., 1977, Properties of carboxytransphosphorylase; pyruvate phosphate dikinase; pyrophosphate-phosphofructokinase and pyrophosp-hate-acetate kinase and their role in the metabolism of inorganic pyrophosphate, Adv. Enzymol. 45:85–155.PubMedGoogle Scholar
  220. Wood, H. G., Ragsdale, S. W., and Pezacka, E., 1986a, The acetyl-CoA pathway: a newly discovered pathway of autotrophic growth, Trends Biochem. Sci. 11:14–18.Google Scholar
  221. Wood, H. G., Ragsdale, S. W., and Pezacka, E., 1986b, The acetyl-CoA pathway of autotrophic growth, FEMS Microbiol. Rev. 39:345–362.Google Scholar
  222. Wood, W. A., 1961, Fermentation of carbohydrates and related compounds, in: The Bacteria, Vol. 2, Metabolism (I. C. Gunsalus and R. Y. Stanier, eds.), Academic Press, New York, pp. 59–149.Google Scholar
  223. Wu, Z., Daniel, S. L., and Drake, H. L., 1988, Characterization of a CO-dependent O-de-methylating enzyme system from the acetogen Clostridium thermoaceticum, J. Bacteriol. 170:5747–5750.PubMedGoogle Scholar
  224. Yamamoto, I., Saiki, T., Liu, S.-M., and Ljungdahl, L. G., 1983, Purification and properties of NADP-dependent formate dehydrogenase from Clostridium thermoaceticum, a tungsten-selenium-iron protein, J. Biol. Chem. 258:1826–1832.PubMedGoogle Scholar
  225. Yang, S.-S., Ljungdahl, L. G., DerVartanian, D. V., and Watt, G. D., 1980, Isolation and characterization of two rubredoxins from Clostridium thermoaceticum, Biochim. Biophys. Acta, 590:24–33.PubMedGoogle Scholar
  226. Yates, R. A., 1981, Removal and concentration of lower molecular weight organic acids from dilute solutions, U.S. Patent 4,282,323.Google Scholar
  227. Young, L. Y., and Frazer, A. C., 1987, The fate of lignin and lignin-derived compounds in anaerobic environments, Geomicrobiol. J. 5:261–293.Google Scholar
  228. Zeikus, J. G., 1980, Chemical and fuel production by anaerobic bacteria, Ann. Rev. Microbiol. 34:423–464.Google Scholar
  229. Zindel, U., Freudenberg, W., Rieth, M., Andreesen, J. R., Schnell, J. and Widdel, F., 1988, Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Description and enzyme studies, Arch. Microbiol. 150:254–266.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Lars G. Ljungdahl
    • 1
  • Jeroen Hugenholtz
    • 1
  • Juergen Wiegel
    • 2
  1. 1.Center for Biological Resource Recovery, and Department of BiochemistryUniversity of GeorgiaAthensUSA
  2. 2.Center for Biological Resource Recovery, and Department of MicrobiologyUniversity of GeorgiaAthensUSA

Personalised recommendations