Advertisement

Clostridia pp 63-103 | Cite as

Genetics of Clostridium

  • Michael Young
  • Walter L. Staudenbauer
  • Nigel P. Minton
Part of the Biotechnology Handbooks book series (BTHA, volume 3)

Abstract

The genus Clostridium does not represent a natural taxonomic grouping (Chapter 1). Several of its remarkably diverse range of organisms are of biotechnological interest because of the end products of their fermentative metabolism (Chapters 4 and 5), the stereospecific reductions that they undertake (Chapter 6), and the potentially important enzymes that they elaborate (Chapter 7). Others are of considerable medical interest. For example, C. botulinum and C. tetani produce some of the most powerful toxins known to man(Chapter 8). Genetic analysis of Clostridia is still in its infancy, but significant progress has been made in the last few years. Various elements of gene transfer technology have been developed in several species, but it is not yet possible to provide a synopsis of techniques that can be applied throughout the genus. This chapter reviews recent progress in the genetic analysis of several species, especially C. acetobutylicum. Summaries of important methods are included as appropriate.

Keywords

Codon Usage Bias Codon Usage Ribosome Binding Site Clostridium Perfringens Tetanus Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, L. J., and Rood, J. I., 1985a, Molecular analysis of transferable tetracycline resistance plasmids from Clostridium perfringens, J. Bacteriol. 161:636–640.PubMedGoogle Scholar
  2. Abraham, L. J., and Rood, J. I., 1985b, Cloning and analysis of the Clostridium perfringens tetracycline resistance plasmid, pCW3, Plasmid 13:155–162.PubMedGoogle Scholar
  3. Abraham, L.J. and Rood, J. I., 1987, Identification of Tn4451 and Tn4452, chloramphenicol resistance transposons from Clostridium perfringens, J. Bacteriol. 169:1579–1584.PubMedGoogle Scholar
  4. Abraham, L. J., and Rood, J. I., 1988, The Clostridium perfringens chloramphenicol resistance transposon Tn4451 excises precisely in Escherichia coli, Plasmid 19:164–168.PubMedGoogle Scholar
  5. Abraham, L. J., Wales, A.J. and Rood, J. I., 1985, World-wide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3, Plasmid 14:37–46.PubMedGoogle Scholar
  6. Abraham, L. J., Berryman, D. I., and Rood, J. I., 1988, Hybridization analysis of the class P tetracycline resistance determinant from the Clostridium perfringens R-plasmid, pCW3, Plasmid 19:113–120.PubMedGoogle Scholar
  7. Allcock, E. R., Reid, S. J., Jones, D. T., and Woods, D. R., 1982, Clostridium acetobutylicum protoplast formation and regeneration, Appl. Env. Microbiol. 43:719–721.Google Scholar
  8. Allen, S. P., and Blaschek, H. P., 1988, Electroporation-induced transformation of intact cells of Clostridium perfringens, Appl. Env. Microbiol. 54:2322–2324.Google Scholar
  9. Béguin, P., Cornet, P., and Millet, J., 1983, Identification of the endoglucanase encoded by the celB gene of Clostridium thermocellum, Biochimie 65:495–500.PubMedGoogle Scholar
  10. Béguin, P., Cornet, P., and Aubert, J. P., 1985, Sequence of a cellulase gene of the thermophilic bacterium Clostridium thermocellum, J. Bacteriol. 162:102–105.PubMedGoogle Scholar
  11. Béguin, P., Rocancourt, M., Chebrou, M. C., and Aubert, J. P., 1986, Mapping of mRNA encoding endoglucanase A from Clostridium thermocellum, Mol. Gen. Genet. 202:251–254.PubMedGoogle Scholar
  12. Béguin, P., Millet, J., and Aubert, J. P., 1987, The cloned cel (cellulose degradation) genes of Clostridium thermocellum and their products, Microbiol. Sciences 4:277–280.Google Scholar
  13. Bibb, M. J., Ward, J. M., and Hopwood, D. A., 1978, Transformation of plasmid DNA into Streptomyces at high frequency, Nature 274:398–400.PubMedGoogle Scholar
  14. Booth, I. R., and Morris, J. G., 1982, Carbohydrate transport in Clostridium pasteurianum, Biosci. Rep. 2:47–53.PubMedGoogle Scholar
  15. Bowring, S. N., and Morris, J. G., 1985, Mutagenesis of Clostridium acetobutylicum, J. Appl. Bacteriol. 58:577–584.PubMedGoogle Scholar
  16. Bréfort, G., Magot, M., Ionesco, H., and Sebald, M., 1977, Characterization and transferability of Clostridium perfringens plasmids, Plasmid 1:52–66.PubMedGoogle Scholar
  17. Brehm, J. K., Salmond, G. P. C., and Minton, N. P., 1987, Sequence of the adenine methylase gene of the Streptococcus faecalis plasmid pAMβ1, Nucl. Acids Res. 15:3177.PubMedGoogle Scholar
  18. Brunier, D., Michel, B., and Ehrlich, S. D., 1988, Copy choice illegitimate DNA recombination, Cell 52:883–892.PubMedGoogle Scholar
  19. Buu-Hoi, A., and Horodniceanu, T., 1980, Conjugative transfer of multiple antibiotic resistance markers in Streptococcus pneumoniae, J. Bacteriol. 143:313–320.PubMedGoogle Scholar
  20. Caillaud, F., and Courvalin, P., 1987, Nucleotide sequence of the ends of the conjugative shuttle transposon Tn1545, Mol. Gen. Genet. 209:110–115.PubMedGoogle Scholar
  21. Caillaud, F., Carlier, C., and Courvalin, P., 1987, Physical analysis of the conjugative shuttle transposon Tn1545, Plasmid 17:58–60.PubMedGoogle Scholar
  22. Cary, J. W., Petersen, D. J., and Bennett, G. N., 1988, Cloning and expression of Clostridium acetobutylicum phosphotransbutyrylase and butyrate kinase in Escherichia coli, J. Bacteriol. 170:4613–4618.Google Scholar
  23. Chambers, S. P., Prior, S. E., Barstow, D. A. and Minton, N. P., 1988, The pMTL nic - cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing, Gene 68:139–149.PubMedGoogle Scholar
  24. Chang, S., and Cohen, S. N., 1979, High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA, Mol. Gen. Genet. 168:111–115.PubMedGoogle Scholar
  25. Chen, K. C. K., Chen, J. S., and Johnson, J. L., 1986, Structural features of multiple nifH-like sequences and very biased codon usage in nitrogenase genes of Clostridium pasteurianum, J. Bacteriol. 166:162–172.Google Scholar
  26. Clewell, D. B., and Gawron-Burke, C., 1986, Conjugative transposons and the dissemination of antibiotic resistance in streptococci, Ann. Rev. Microbiol. 40:635–659.Google Scholar
  27. Collins, M. E., Oultram, J. D., and Young, M., 1985, Identification of restriction fragments from two cryptic Clostridium butyricum plasmids that promote the establishment of a replication-defective plasmid in Bacillus subtilis, J. Gen. Microbiol. 131:2097–2105.Google Scholar
  28. Contag, P. R., and Rogers, P., 1988, The cloning and expression of the Clostridium acetobutylicum B643 butyraldehyde dehydrogenase by complementation of an Escherichia coli aldehyde dehydrogenase negative mutant, ASM Annual Meeting Abstracts, 1988, p. 169.Google Scholar
  29. Cornet, P., Tronik, D., Millet, J., and Aubert, J. P., 1983a, Cloning and expression in Escherichia coli of Clostridium thermocellum genes coding for amino acid synthesis and cellulose hydrolysis, FEMS Microbiol. Lett. 16:137–141.Google Scholar
  30. Cornet, P., Millet, J., Béguin, P., and Aubert, J. P., 1983b, Characterization of two cel (cellulose degradation) genes of Clostridium thermocellum coding for endoglucanases, Biol/Technology 1:589–594.Google Scholar
  31. Courvalin, P., and Carlier, C., 1986, Transposable multiple antibiotic resistance in Streptococcus pneumoniae, Mol. Gen. Genet. 205:291–297.Google Scholar
  32. Courvalin, P., and Carlier, C., 1987, Tn1545: a conjugative shuttle transposon, Mol. Gen. Genet. 206:259–264.PubMedGoogle Scholar
  33. Daldal, F., and Applebaum, J., 1985, Cloning and expression of Clostridium pasteurianum galactokinase gene in Escherichia coli K-12 and nucleotide sequence analysis of a region affecting the amount of the enzyme, J. Mol. Biol. 186:533–544.PubMedGoogle Scholar
  34. Davies, A., Oultram, J. D., Pennock, A., Williams, D. R., Richards, D. F., Minton, N. P., and Young, M., 1988, Conjugal gene transfer in Clostridium acetobutylicum, in: Genetics and Biotechnology of Bacilli, Vol. 2 (A. T. Ganesan and J. A. Hoch, eds.), Academic Press, London, pp. 391–395.Google Scholar
  35. Doi, R. H., and Wang, L. F., 1986, Multiple prokaryotic ribonucleic acid polymerase sigma factors, Microbiol. Rev. 50:227–243.PubMedGoogle Scholar
  36. Dubbert, W., Luczak, H., and Staudenbauer, W. L., 1988, Cloning of two chloramphenicol acetyltransferase genes from Clostridium butyricum and their expression in Escherichia coli and Bacillus subtilis, Mol. Gen. Genet. 214:328–332.Google Scholar
  37. Efstathiou, I., and Truffaut, N., 1986, Cloning of Clostridium acetobutylicum genes and their expression in Escherichia coli and Bacillus subtilis, Mol. Gen. Genet. 204:317–321.Google Scholar
  38. Eisel, U., Jarausch, W., Goretzki, K., Henschen, A., Engels, J., Weiler, U., Hudel, M., Habermann, E., and Niemann, H., 1986, Tetanus toxin: primary structure, expression in Escherichia coli, and homology with botulinum toxins, EMBO J. 5:2495–2502.PubMedGoogle Scholar
  39. Eklund, M. W., Poysky, F. T., Mseitif, L. M., and Strom, M. S., 1988, Evidence for plasmid-mediated toxin and bacteriocin production in Clostridium botulinum type G, Appl. Env. Microbiol. 54:1405–1408.Google Scholar
  40. Fairweather, N. F., and Lyness, V. A., 1986, The complete nucleotide sequence of the tetanus toxin, Nucl. Acid. Res. 14:7809–7812.Google Scholar
  41. Fairweather, N. F., Lyness, V. A., Pickard, D. J., Allen, G., and Thomson, R. O., 1986, Cloning, nucleotide sequencing, and expression of tetanus toxin fragment C in Escherichia coli, J. Bacteriol. 165:21–27.Google Scholar
  42. Faure, E., Bagnara, C., Belaich, A., and Belaich, J. P., 1988, Cloning and expression of two cellulase genes of Clostridium cellulolyticum in Escherichia coli, Gene 65:51–58.Google Scholar
  43. Finn Jr, C. W., Silver, R. P., Habig, W. H., Hardegree, M. C., Zon, G., and Garon, C. F., 1984, The structural gene for tetanus neurotoxin is on a plasmid, Science 224:881–884.PubMedGoogle Scholar
  44. Fornari, C. S., and Kaplan, S., 1982, Genetic transformation of Rhodopseudomonas sphaeroides by plasmid DNA, J. Bacteriol. 154:1513–1515.Google Scholar
  45. Franke, A. E., and Clewell, D. B., 1981, Evidence for a chromosome-borne resistance trans-poson (Tn916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid, J. Bacteriol. 145:494–502.PubMedGoogle Scholar
  46. Galas, D., and Schmitz, A., 1978, DNAase footprinting: a simple method for the detection of protein-DNA binding specificity, Nucl. Acids Res. 5:3157–3170.PubMedGoogle Scholar
  47. Garnier, T., and Cole, S. T., 1986, Characterization of a bacteriocinogenic plasmid from Clostridium perfringens and molecular genetic analysis of the bacteriocin-encoding gene, J. Bacteriol. 168:1189–1196.PubMedGoogle Scholar
  48. Garnier, T., and Cole, S. T., 1988a, Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP404, from Clostridium perfringens, Plasmid 19:134–150.Google Scholar
  49. Garnier, T., and Cole, S. T., 1988b, Identification and molecular genetic analysis of replication functions of the bacteriocinogenic plasmid pIP404 from Clostridium perfringens, Plasmid 19:151–160.Google Scholar
  50. Garnier, T., and Cole, S. T., 1988c, Studies of UV-inducible promoters from Clostridium perfringens in vivo and in vitro, Mol. Microbiol. 2 (5):607–614.PubMedGoogle Scholar
  51. Garnier, T., Le Grice, S. F. J., and Cole, S. T., 1987a, Characterization of the promoters for two UV-inducible transcriptional units carried by plasmid pIP404 from Clostridium perfringens, in: Genetics and Biotechnology of the Bacilli, Vol. 2 (A. T. Ganesan and J. A. Hoch, eds.) Academic Press, London, pp. 211–214.Google Scholar
  52. Garnier, T., Saurin, W., and Cole, S. T., 1987b, Molecular characterization of the resolvase gene, res, carried by a multicopy plasmid from Clostridium perfringens: Common evolutionary origin for prokaryotic site-specific recombinases, Mol. Microbiol. 1:371–376.PubMedGoogle Scholar
  53. Gawron-Burke, C., and Clewell, D. B., 1982, A transposon in Streptococcus faecalis with fertility properties, Nature 300:281–284.PubMedGoogle Scholar
  54. Gawron-Burke, C. and Clewell, D. B., 1984, Regeneration of insertionally inactivated streptococcal DNA fragments after excision of transposon Tn916 in Escherichia coli: Strategy for targeting and cloning of genes from Gram-positive bacteria, J. Bacteriol. 159:214–221.PubMedGoogle Scholar
  55. Gräbnitz, F., and Staudenbauer, W. L., 1988, Characterization of two β-glucosidase genes from Clostridium thermocellum, Biotechnol. Lett. 10:73–78.Google Scholar
  56. Graves, M. C., and Rabinowitz, J. C., 1986, In vivo and in vitro transcription of the Clostridium pasteurianum ferredoxin gene. Evidence for “extended” promoter elements in gram-positive organisms,J. Biol. Chem. 261:11409–11415.PubMedGoogle Scholar
  57. Graves, M. C., Mullenbach, G. T., and Rabinowitz, J. C., 1985, Cloning and nucleotide sequence of the Clostridium pasteurianum ferredoxin gene, Proc. Natl. Acad. Sci. USA 82: 1653–1657.PubMedGoogle Scholar
  58. Green, P. J., Pines, O., and Inouye, M., 1986, The role of antisense RNA in gene regulation, Ann. Rev. Biochem. 55:569–597.PubMedGoogle Scholar
  59. Grépinet, O., and Béguin, P., 1986, Sequence of the cellulase gene of Clostridium thermocellum coding for endoglucanase B, Nucl. Acid. Res. 14:1791–1799.Google Scholar
  60. Gros, M. F., te Riele, H., and Ehrlich, S. D., 1987, Rolling circle replication of single-stranded DNA plasmid pC194, EMBO J. 6:3863–3869.PubMedGoogle Scholar
  61. Gruss, A., Ross, H. F., and Novick, R. P., 1987, Functional analysis of a palindromic sequence required for normal replication of several staphylococcal plasmids, Proc. Natl. Acad. Sci. USA 84:2165–2169.PubMedGoogle Scholar
  62. Hächler, H., Kayser, F. H., and Berger-Bächi, B., 1987, Homology of a transferable tetracycline resistance determinant of Clostridium difficile with Streptococcus (Enterococcus) faecalis transposon Tn 916, Antimicrob. Ag. Chemother. 31:1033–1038.Google Scholar
  63. Hager, P. W., and Rabinowitz, J. C., 1985, Translational specificity in Bacillus subtilis, in: The Molecular Biology of the Bacilli, Vol. 2 (D. Dubnau, ed.), Academic Press, New York, pp. 1–32.Google Scholar
  64. Hall, J., Hazlewood, G. P., Barker, P. J., and Gilbert, H. J., 1988, Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity, Gene 69:29–38.PubMedGoogle Scholar
  65. Hanna, P. C., Wnek, A. P., and McClane, B. A., 1988, Cloning of Clostridium perfringens type A enterotoxin gene fragment, ASM Annual Meeting Abstracts, 1988, p. 36.Google Scholar
  66. Hazlewood, G. P., Romaniec, M. P. M., Davidson, K., Grépinet, O., Béguin, P., Millet, J., Raynaud, O., and Aubert, J. P., 1988, A catalogue of Clostridium thermocellum endoglucanase, β-glucosidase and xylanase genes cloned in Escherichia coli, FEMS Microbiol. Lett. 51: 231–236.Google Scholar
  67. Heefner, D. L., Squires, C. H., Evans, R. J., Kopp, B. J., and Yarus, M. J., 1984, Transformation of Clostridium perfringens, J. Bacteriol. 159:460–464.PubMedGoogle Scholar
  68. Hinton, S. M., and Freyer, G., 1986, Cloning, expression and sequencing the molybdenumpterin binding protein (mop) gene of Clostridium pasteurianum in Escherichia coli, Nucl. Acids Res. 14:9371–9380.Google Scholar
  69. Hinton, S. M., Slaughter, C., Eisner, W., and Fisher, T., 1987, The molybdenum-pterin binding protein is encoded by a multigene family in Clostridium pasteurianum, Gene 54: 211–219.Google Scholar
  70. Hill, L. R., 1966, An index to deoxyribonucleic acid base compositions of bacterial species, J. Gen. Microbiol. 44:419–437.PubMedGoogle Scholar
  71. Hongo, M., 1960, US Patent 2, 945, 786.Google Scholar
  72. Imanaka, T., Ishikawa, H., and Aiba, S., 1986, Complete nucleotide sequence of the low copy number plasmid pRAT11 and replication control by the Rep A protein in Bacillus subtilis, Mol. Gen. Genet. 205:90–96.Google Scholar
  73. Ionesco, H., 1980, Transfert de la résistance à la tétracycline chez Clostridium difficile, Ann. Microbiol. Inst. Pasteur 131:171–179.Google Scholar
  74. Ishii, K., Kudo, T., Honda, H., and Horikoshi, K., 1983, Molecular cloning of β-isopropylmalate dehydrogenase gene from Clostridium butyricum M588, Agric. Biol. Chem. 47:2313–2317.Google Scholar
  75. Jannière, L., and Ehrlich, S. D., 1987, Recombination between short repeated sequences is more frequent in plasmids than in the chromosome of Bacillus subtilis, Mol. Gen. Genet. 210:116–121.PubMedGoogle Scholar
  76. Jannière, L., and Ehrlich, S. D., 1989, Structurally stable DNA cloning vectors, Gene (in press).Google Scholar
  77. Janssen, P. J., Jones, W. A., Jones, D. T., and Woods, D. R., 1988, Molecular analysis and regulation of the glnA gene of the Gram-positive anaerobe Clostridium acetobutylicum, J. Bacteriol. 170:400–408.Google Scholar
  78. Johnson, J. L., and Francis, B. S., 1975, Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species, J. Gen. Microbiol. 88:229–244.PubMedGoogle Scholar
  79. Joliff, G., Béguin, P., Juy, M., Millet, J., Ryter, A., Poljak, R., and Aubert, J. P., 1986a, Isolation, crystallization and properties of a new cellulase of Clostridium thermocellum overproduced in Escherichia coli, Bio/Technology 4:896–900.Google Scholar
  80. Joliff, G., Béguin, P., and Aubert, J. P., 1986b, Nucleotide sequence of the cellulase gene celD encoding endoglucanase D of Clostridium thermocellum, Nucleic Acids Res. 14:8605–8613.Google Scholar
  81. Jones, D. T., and Woods, D. R., 1986, Gene transfer, recombination and gene cloning in Clostridium acetobutylicum, Microbiol. Sci. 3:19–22.Google Scholar
  82. Jones, J. M., Gawron-Burke, C., Flannagan, S. E., Yamamoto, M., Senghas, E., and Clewell, D. B., 1987a, Structural and genetic studies of the conjugative transposon Tn916, in: Staphylococcal Genetics (J. J. Ferretti and R. Curtiss III, eds.,) ASM, Washington, pp. 54–60.Google Scholar
  83. Jones, J. M., Yost, S. C., and Pattee, P. A., 1987b, Transfer of the conjugal tetracycline resistance transposon Tn916 from Streptococcus faecalis to Staphylococcus aureus and identification of some insertion sites in the staphylococcal chromosome, J. Bacteriol. 169:2121–2131.PubMedGoogle Scholar
  84. Kadam, S., Demain, A. L., Millet, J., Béguin, P., and Aubert, J. P., 1988, Molecular cloning of a gene for a thermostable β-glucosidase from Clostridium thermocellum into Escherichia coli, Enzyme Microb. Technol. 10:9–13.Google Scholar
  85. Karube, I., Urano, N., Yamada, T., Hirochika, H., and Sakaguchi, K., 1983, Cloning and expression of the hydrogenase gene from Clostridium butyricum in Escherichia coli, FEBS Lett. 158:119–122.Google Scholar
  86. Kathariou, S., Metz, P., Hof, H., and Goebel, W., 1987, Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes, J. Bacteriol. 169:1291–1297.Google Scholar
  87. Knowlton, S., Ferchak, J. D., and Alexander, J. K., 1984, Protoplast regeneration in Clostridium tertium: Isolation of derivatives with high frequency regeneration, Appl. Env. Microbiol. 48:1246–1247.Google Scholar
  88. LeBlanc, D. J., and Lee, L. N., 1984, Physical and genetic analyses of streptococcal plasmid pAMβ1 and cloning of its replication region,J. Bacteriol. 157:445–453.PubMedGoogle Scholar
  89. Lereclus, D., Menou, G., and Lecadet, M.-M., 1983, Isolation of a DNA sequence related to several plasmids from Bacillus thuringiensis after a mating involving the Streptococcus faecalis plasmid pAMßl, Mol. Gen. Genet. 191:307–313.PubMedGoogle Scholar
  90. Lin, Y., and Blaschek, H. P., 1984, Transformation of heat-treated Clostridium acetobutylicum with pUB110 plasmid DNA, Appl. Env. Microbiol 48:737–742.Google Scholar
  91. Lovell, C. R., Przybyla, A., and Ljungdahl, L. G., 1988, Cloning and expression in Escherichia coli of the Clostridium thermoaceticum gene encoding thermostable formyltetrahydrofolate synthetase, Arch. Microbiol. 149:280–285.PubMedGoogle Scholar
  92. Lucansky, J. B., Muriana, P. M., and Klaenhammer, T. R., 1988, Application of electropo-ration for transfer of plasmid DNA to Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pedio-coccus, Bacillus, Staphylococcus, Enterococcus and Propionibacterium, Mol. Microbiol. 2:637–646.Google Scholar
  93. Luczak, H., Schwarzmoser, H., and Staudenbauer, W. L., 1985, Construction of Clostridium butyricum plasmids and transfer to Bacillus subtilis, Appl. Microbiol. Biotechnol. 23:114–122.Google Scholar
  94. McLaughlin, J. R., Murray, C. L., and Rabinowitz, J. C., 1981, Unique features in the ribosome binding site sequence of the gram-positive Staphylococcus aureus β-lactamase gene, J. Biol Chem. 256:11283–11291.PubMedGoogle Scholar
  95. Macrina, F. L., Keeler, C. L., Jones, K. R. and Wood, P. H., 1980, Molecular characterization of unique deletion mutants of the streptococcal plasmid, pAMβ1, Plasmid 4:8–16.PubMedGoogle Scholar
  96. Magot, M., 1983, Transfer of antibiotic resistances from Clostridium innocuum to Clostridium perfringens in the absence of detectable plasmid DNA, FEMS Microbiol. Lett. 18:149–151.Google Scholar
  97. Magot, M., 1984, Physical characterization of the Clostridium perfringens tetracycline-chloramphenicol resistance plasmid pIP401, Ann. Microbiol Inst. Pasteur 135:269–282.Google Scholar
  98. Mahony, D. E., Mader, J. A., and Dubel, J. R., 1988, Transformation of Clostridium perfringens L forms with shuttle plasmid DNA, Appl. Env. Microbiol 54:264–267.Google Scholar
  99. Mendez, B. S., and Gomez, R. F., 1982, Isolation of Clostridium thermocellum auxotrophs, Appl. Env. Microbiol. 43:495–496.Google Scholar
  100. Michaelis, S., and Beckwith, J., 1982, Mechanism of incorporation of cell envelope proteins in Escherichia coli, Ann. Rev. Microbiol. 36:435–465.Google Scholar
  101. Millet, J., Pétré, D., Béguin, P., Raynaud, O., and Aubert, J. P., 1985, Cloning of ten distinct DNA fragments of Clostridium thermocellum coding for cellulases, FEMS Microbiol. Lett. 29: 145–149.Google Scholar
  102. Minton, N. P., and Morris, J. G., 1981, Isolation and partial characterization of three cryptic plasmids from strains of Clostridium butyricum, J. Gen. Microbiol 127:325–331.Google Scholar
  103. Minton, N. P., and Morris, J. G., 1983, Regeneration of protoplasts of Clostridium pasteurianum ATCC 6013, J. Bacterial. 155:432–434.Google Scholar
  104. Minton, N. P., and Oultram, J. D., 1988, Host:vector systems for gene cloning in Clostridium, Microbiol Sci 5:310–315.PubMedGoogle Scholar
  105. Minton, N. P., Brehm, J. K., Oultram, J. D., Swinfield, T. J., and Thompson, D. E., 1988, Construction of plasmid vector systems for gene transfer in Clostridium acetobutylicum, in: Anaerobes Today (J. M. Hardie and S. P. Boriello, eds.), John Wiley and Sons, Chichester, pp. 125–134.Google Scholar
  106. Minton, N. P., and Thompson, D. E. 1989, Genetics of anaerobes, in: Anaerobes in Human Disease (B. I. Duerden and B. S. Drassar, eds.), Edward Arnold Ltd, London (in press).Google Scholar
  107. Muldrow, L. L., Ibeanu, G. C., Lee, N. I., Bose, N. K., and Johnson, J., 1988, Molecular cloning of Clostridium difficile toxin B gene fragments in Escherichia coli, ASM Annual Meeting Abstracts, 1988, p. 37.Google Scholar
  108. Murray, W. D., Wemyss, K. B., and Khan, A. W., 1983, Increased ethanol production and tolerance by a pyruvate-negative mutant of Clostridium saccharolyticum, Eur. J. Appl. Microbiol Biotechnol 18:71–74.Google Scholar
  109. O’Brien, R. W., and Morris, J. G., 1971, Oxygen and the growth and metabolism of Clostridium acetobutylicum, J. Gen. Microbiol 68:307–318.PubMedGoogle Scholar
  110. Ogasawara, N., 1985, Markedly unbiased codon usage in Bacillus subtilis, Gene 40:145–150.PubMedGoogle Scholar
  111. Ogata, S., Choi, K. H., and Hongo, M., 1975, Sucrose-induced autolysis and development of protoplast-like cells of Clostridium saccharoperbutylacetonicum, Agric. Biol Chem. 39:1247–1254.Google Scholar
  112. Oultram, J. D., and Young, M., 1985, Conjugal transfer of plasmid pAMβ1 from Streptococcus lactis and Bacillus subtilis to Clostridium acetobutylicum, FEMS Microbiol Lett. 27:129–134.Google Scholar
  113. Oultram, J. D., Davies, A., and Young, M., 1987, Conjugal transfer of a small plasmid from Bacillus subtilis to Clostridium acetobutylicum by cointegrate formation with plasmid pAMβ1, FEMS Microbiol. Lett. 42:113–119.Google Scholar
  114. Oultram, J. D., Loughlin, M., Swinfield, T. J., Brehm, J. K., Thompson, D. E., and Minton, N. P., 1988a, Introduction of plasmids into whole cells of Clostridium acetobutylicum by electroporation FEMS Microbiol Lett. 56:83–88.Google Scholar
  115. Oultram, J. D., Peck, H., Brehm, J. K., Thompson, D., Swinfield, T. J., and Minton, N. P., 1988b, Introduction of genes for leucine biosynthesis from Clostridium pasteurianum into Clostridium acetobutylicum, Mol Gen. Genet. 214:177–179.PubMedGoogle Scholar
  116. Pan-Hou, H. S. K., Hosono, M., and Imura, N., 1980, Plasmid-controlled mercury biotransformation by Clostridium cochlearum T-2, Appl. Env. Microbiol. 40:1007–1011.Google Scholar
  117. Pétré, D., Millet, J., Longin, R., Béguin, P., Girard, M., and Aubert, J.-P., 1986, Purification of the endoglucanase C of Clostridium thermocellum produced in Escherichia coli, Biochimie, 68: 687–695.Google Scholar
  118. Podvin, L., Reysset, G., Hubert, J., and Sebald, M., 1988, Recent developments in the genetics of Clostridium acetobutylicum, in: Anaerobes Today (J. M. Hardie and S. P. Borriello, eds.), John Wiley and Sons, Chichester, pp. 135–140.Google Scholar
  119. Reid, S. J., Allcock, E. R., Jones, D. T., and Woods, D. R., 1983, Transformation of Clostridium acetobutylicum protoplasts with bacteriophage DNA, Appl Env. Microbiol. 45:305–307.Google Scholar
  120. Reysset, G., and Sebald, M., 1985, Conjugal transfer of plasmid-mediated antibiotic resistance from streptococci to Clostridium acetobutylicum, Ann Microbiol Inst. Pasteur 136:275–282.Google Scholar
  121. Reysset, G., Hubert, J., Podvin, L., and Sebald, M., 1987, Protoplast formation and regeneration oi Clostridium acetobutylicum strain N1–4080, J. Gen. Microbiol 133:2595–2600.Google Scholar
  122. Richards, D. F., Linnett, P. E., Oultram, J. D., and Young, M., 1988, Restriction endonucleases in Clostridium pasteurianum ATCC 6013 and C. thermohydrosulfuricum DSM 568, J. Gen. Microbiol 134:3151–3157.PubMedGoogle Scholar
  123. Roberts, R. J., 1987, Restriction enzymes and their isoschizomers, Nucl. Acids Res. 15(suppl): r189–r217.Google Scholar
  124. Roberts, I., Holmes, W. M., and Hylemon, P. B., 1988, Development of a new shuttle plasmid system for Escherichia coli and Clostridium perfringens, Appl. Env. Microbiol. 54:268–270.Google Scholar
  125. Robson, R. L., Robson, R. M., and Morris, J. G., 1974, The biosynthesis of granulose by Clostridium pasteurianum, Biochem. J. 144:503–511.PubMedGoogle Scholar
  126. Rogers, P., 1986, Genetics and biochemistry of Clostridium relevant to development of fermentation processes, Adv. Appl. Microbiol. 31:1–60.Google Scholar
  127. Roggentin, P., Rothe, B., Lottspeich, F., and Schauer, R., 1988, Cloning and sequencing of a Clostridium perfringens sialidase gene, FEBS Lett. 238:31–34.PubMedGoogle Scholar
  128. Romaniec, M. P. M., Clarke, N. G., and Hazlewood, G. P., 1987a, Molecular cloning of Clostridium thermocellum DNA and the expression of further novel endo-β-1,4-glucanase genes in Escherichia coli, J. Gen. Microbiol. 133:1297–1307.PubMedGoogle Scholar
  129. Romaniec, M. P. M., Davidson, K., and Hazlewood, G. P., 1987b, Cloning and expression in Escherichia coli of Clostridium thermocellum DNA encoding β-glucosidase activity, Enzyme Microb. Technol. 9:474–478.Google Scholar
  130. Rood, J. I., 1983, Transferable tetracycline resistance in Clostridium perfringens strains of porcine origin, Canad.J. Microbiol. 29:1241–1246.Google Scholar
  131. Rood, J. I., Scott, V. N. and Duncan, C. L., 1978, Identification of a transferable tetracycline resistance plasmid (pCW3) from Clostridium perfringens, Plasmid 1:563–570.PubMedGoogle Scholar
  132. Schaberg, D. R., Clewell, D. B., and Glatzer, L., 1982, Conjugative transfer of R-plasmids from Streptococcus faecalis to Straphylococcus aureus, Antimicrob. Ag. Chemother. 22:204–207.Google Scholar
  133. Salser, W., 1977, Secondary structure prediction of RNA, Cold Spring Harbor Symp. Quant. Biol. 42:985–995.Google Scholar
  134. Scott, J. R., 1984, Regulation of plasmid replication, Microbiol. Rev. 48:1–23.PubMedGoogle Scholar
  135. Schimming, S., Schwarz, W. H., and Staudenbauer, W. L., 1988, Clustering of Clostridium thermocellum genes involved in β-glucan degradation, FEMS Microbiol. Lett. (submitted).Google Scholar
  136. Schwarz, W. H., Bronnenmeier, K., and Staudenbauer, W. L., 1985, Molecular cloning of Clostridium thermocellum genes involved in β-glucan degradation in bacteriophage lambda, Biotechnol. Lett. 7:859–864.Google Scholar
  137. Schwarz, W. H., Gräbnitz, F., and Staudenbauer, W. L., 1986, Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli, Appl. Env. Microbiol. 51:1293–1299.Google Scholar
  138. Schwarz, W. H., Schimming, S., and Staudenbauer, W. L., 1987, High-level expression of Clostridium thermocellum cellulase genes in Escherichia coli, Appl. Microbiol. Biotechnol. 27:50–56.Google Scholar
  139. Schwarz, W. H., Schimming, S., Rücknagel, K. P., Burgschwaiger, S., Kreil, G., and Staudenbauer, W. L., 1988a, Nucleotide sequence of the celC gene encoding endoglucanase C of Clostridium thermocellum, Gene 63:23–30.PubMedGoogle Scholar
  140. Schwarz, W. H., Schimming, S., and Staudenbauer, W. L., 1988b, Isolation of a Clostridium thermocellum gene encoding a thermostable β-1,3-glucanase (laminarinase), Biotechnol. Lett. 10:225–230.Google Scholar
  141. Schwarz, W. H., Jauris, S., Kouba, M., and Staudenbauer, W. L., 1988c, Molecular cloning and expression in Escherichia coli of Clostridium stercorarium genes involved in cellulose degradation, Biotechnol. Lett. (submitted).Google Scholar
  142. Sebald, M. and Brefort, G., 1975, Transfert du plasmide tétracycline-chloramphénicol chez Clostridium perfringens, C. R. Acad. Sci. Paris Ser. D. 281: 317–319.Google Scholar
  143. Sebald, M., and Costilow, R. N., 1975, Minimal growth requirements for Clostridium perfringens and isolation of auxotrophic mutants, Appl. Microbiol. 29:1–16.PubMedGoogle Scholar
  144. Sebald, M., Bouanchaud, D., and Bieth, G., 1975, Nature plasmidique de la résistance à plusieurs antibiotiques chez C. perfringens type A, souche 659. C. R. Acad. Sci. Paris Ser. D. 280:2401–2404.Google Scholar
  145. Senghas, E., Jones, J. M., Yamamoto, M., Gawron-Burke, C., and Clewell, D. B., 1988, Genetic organization of the bacterial conjugative transposon Tn916, J. Bacteriol. 170:245–259.PubMedGoogle Scholar
  146. Shimoi, H., Nagata, S., Esaki, N., Tanaka, H., and Soda, K., 1987, Leucine dehydrogenase of a thermophilic anaerobe, Clostridium thermoaceticum: Gene cloning, purification and characterization, Agric. Biol. Chem. 51:3375.Google Scholar
  147. Shine, J., and Dalgarno, L., 1974, The 3′-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites, Proc. Natl. Acad. Sci. USA 71:1342–1346.PubMedGoogle Scholar
  148. Shoemaker, N. B., Smith, M. D., and Guild, W. R., 1980, DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in Pneumococcus, Plasmid 3:80–87.Google Scholar
  149. Smith, M. D., 1985, Transformation and fusion of Streptococcus faecalis protoplasts, J. Bacteriol. 162:92–97.PubMedGoogle Scholar
  150. Smith, M. D., and Clewell, D. B., 1984, Return of Streptococcus faecalis DNA cloned in Escherichia coli to its original host via transformation of Streptococcus sanguis followed by conjugative mobilization, J. Bacteriol. 160:1109–1114.PubMedGoogle Scholar
  151. Smith, C. J., Markowitz, S. M., and Macrina, F. L., 1981, Transferable tetracycline resistance in Clostridium difficile, Antimicrob. Ag. Chemother. 19:997–1003.Google Scholar
  152. Soutschek-Bauer, E., and Staudenbauer, W. L., 1987, Synthesis and secretion of a heat-stable carboxymethylcellulase from Clostridium thermocellum in Bacillus subtilis and Bacillus stearothermophilus, Mol. Gen. Genet. 208:537–541.PubMedGoogle Scholar
  153. Soutschek-Bauer, E., Hartl, L., and Staudenbauer, W. L., 1985, Transformation of Clostridium thermohydrosulfuricum DSM 568 with plasmid DNA, Biotechnol. Lett. 7:705–710.Google Scholar
  154. Squires, C. H., Heefner, D. L., Evans, R. J., Kopp, B. J., and Yarus, M. J., 1984, Shuttle plasmids for Escherichia coli and Clostridium perfringens, J. Bacteriol. 159:465–471.PubMedGoogle Scholar
  155. Stal, M. H., and Blaschek, H. P., 1985, Protoplast formation and cell wall regeneration in Clostridium perfringens, Appl. Env. Microbiol., 50:1097–1099.Google Scholar
  156. Swinfield, T. J., Oultram, J. D., Thompson, D. E., Brehm, J. K., and Minton, N. P., 1989, Physical characterization of the replication region of the Streptococcus faecalis plasmid pAMβ1, Gene (in press).Google Scholar
  157. Terzaghi, B. E., and Sandine, W. E., 1975, Improved medium for lactic streptococci and their bacteriophages, Appl. Microbiol. 29:807–813.PubMedGoogle Scholar
  158. Trieu-Cuot, P., Carlier, C., Martin, P., and Courvalin, P., 1987, Plasmid transfer by conjugation from Escherichia coli to gram-positive bacteria, FEMS Microbiol. Lett. 48:289–294.Google Scholar
  159. Usdin, K. P., Zappe, H., Jones, D. T., and Woods, D. R., 1986, Cloning, expression, and purification of glutamine synthetase from Clostridium acetobutylicum. Appl. Env. Microbiol 52:413–419.Google Scholar
  160. van der Lelie, D., and Venema, G., 1987, Bacillus subtilis generates a major specific deletion in pAMβ1, Appl. Env. Microbiol. 53:2458–2463.Google Scholar
  161. Vocke, C., and Bastia, D., 1983, DNA-protein interaction at the origin of DNA replication of the plasmid pSC101, Cell 35:495–502.PubMedGoogle Scholar
  162. Volk, W. A., Bizzini, B., Jones, K. R., and Macrina, F. L., 1988, Inter- and intrageneric transfer of Tn916 between Streptococcus faecalis and Clostridium tetani, Plasmid 19:255–259.Google Scholar
  163. von Heijne, G., 1986, A new method for predicting signal sequence cleavage sites, Nucl. Acids Res. 14:4683–4690.PubMedGoogle Scholar
  164. Walker, G. C., 1983, Genetic strategies in strain design for fermentations, in: Basic Biology of New Developments in Biotechnology (A. Hollander, A. I. Laskin, and P. Rogers, eds.), Plenum Press, New York, pp. 349–376.Google Scholar
  165. Wang, S. Z., Chen, J. S., and Johnson, J. L., 1987, Nucleotide and deduced amino acid sequences of nifD encoding the A 2 n-subunit of nitrogenase MoFe protein of Clostridium pasteurianum, Nucl. Acids Res. 15:3935.Google Scholar
  166. Wang, S. Z., Chen, J. S., and Johnson, J. L., 1988, The presence of five nifH-like sequences in Clostridium pasteurianum: Sequence divergence and transcription properties, Nucl. Acids Res. 16:439–454.PubMedGoogle Scholar
  167. Whitehead, T. R., and Rabinowitz, J. C., 1986, Cloning and expression in Escherichia coli of the gene for 10-formyltetrahydrofolate synthetase from Clostridium acidi-urici, J. Bacterial. 167:205–209.Google Scholar
  168. Wren, B.W., Clayton, C. L., Mullany, P. P., and Tabaqchali, S., 1987, Molecular cloning and expression of Clostridium difficile toxin A in Escherichia coli, FEBS Lett. 225:82–86.PubMedGoogle Scholar
  169. Wren, B. W., Mullany, P., Clayton, C., and Tabaqchali, S., 1988, Molecular cloning and genetic analysis of a chloramphenicol acetyltransferase determinant from Clostridium difficile, Antimicrob. Ag. Chemother. 32:1213–1217.Google Scholar
  170. Wüst, J., and Hardegger, U., 1983, Transferable resistance to clindamycin, erythromycin, and tetracycline in Clostridium difficile, Antimicrob. Ag. Chemother. 23:784–786.Google Scholar
  171. Yamamoto, M., Jones, J. M., Senghas, E., Gawron-Burke, C., and Clewell, D. B., 1987, Generation of Tn5 insertions in streptococcal conjugative transposon Tn916, Appl. Env. Microbiol. 53:1069–1072.Google Scholar
  172. Yoshino, S., Ogata, S., and Hayashida, S., 1982, Some properties of autolysin of Clostridium saccharoperbutylacetonicum, Agric. Biol. Chem. 46:1243–1248.Google Scholar
  173. Yoshino, S., Ogata, S., and Hayashida, S., 1984, Regeneration of protoplasts of Clostridium saccharoperbutylacetonicum, Agric. Biol. Chem. 48:249–250.Google Scholar
  174. Young, M., Collins, M. E., Oultram, J. D., and Pennock, A., 1986, Genetic exchange and prospects for cloning in Clostridia, in: Bacillus Molecular Genetics and Biotechnology Applications (A. T. Ganesan and J. A. Hoch, eds.), Academic Press, London, pp. 259–281.Google Scholar
  175. Youngleson, J. S., Santangelo, J. D., Jones, D. T., and Woods, D. R., 1988, Cloning and expression of Clostridium acetobutylicum alcohol dehydrogenase gene in Escherichia coli, Appl. Environ. Microbiol. 54:676–682.PubMedGoogle Scholar
  176. Yu, P.-L., and Pearce, L. E., 1986, Conjugal transfer of streptococcal antibiotic resistance plasmids into Clostridium acetobutylicum, Biotechnol. Lett. 8:469–474.Google Scholar
  177. Zappe, H., Jones, D. T., and Woods, D. R., 1986, Cloning and expression of Clostridium acetobutylicum endoglucanase, cellobiase and amino acid biosynthesis genes in Escherichia coli, J. Gen. Microbiol. 132:1367–1372.PubMedGoogle Scholar
  178. Zappe, H., Jones, D. T., and Woods, D. R., 1987, Cloning and expression of a xylanase gene from Clostridium acetobutylicum P262 in Escherichia coli, Appl. Microbiol. Biotechnol. 27:57–63.Google Scholar
  179. Zappe, H., Jones, W. A., Jones, D. T., and Woods, D. R., 1988, Structure of an endo-β-1,4-glucanase gene from Clostridium acetobutylicum P262 showing homology with endoglucanase genes from Bacillus spp., Appl. Env. Microbiol. 54:1289–1292.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Michael Young
    • 1
  • Walter L. Staudenbauer
    • 2
  • Nigel P. Minton
    • 3
  1. 1.Department of Biological SciencesUniversity College of WalesPenglais, Aberystwyth, DyfedWales
  2. 2.Botany and Microbiology Institute, Department of MicrobiologyTechnical University of MunichMunich 2Federal Republic of Germany
  3. 3.Molecular Genetics Group, Division of Biotechnology, Public Health Laboratory ServiceCentre for Applied Microbiology and ResearchPorton Down, Salisbury, WiltshireSP4 0JGEngland

Personalised recommendations