Clostridia pp 27-62 | Cite as

Introduction to the Physiology and Biochemistry of the Genus Clostridium

  • Jan R. Andreesen
  • Hubert Bahl
  • Gerhard Gottschalk
Part of the Biotechnology Handbooks book series (BTHA, volume 3)


The genus Clostridium was created by Prazmowski in 1880. Four criteria presently classify an organism as a Clostridium: (1) the ability to form endospores; (2) restriction to an anaerobic energy metabolism; (3) the inability to carry out a dissimilatory reduction of sulfate; and (4) the possession of a gram-positive cell wall, which may react gram-negative. These criteria are met by an otherwise diverse assembly of microorganisms, and the genus Clostridium has grown to be one of the largest genera among prokaryotes. A total of 83 species are listed in Bergey’s Manual of Systematic Bacteriology (Cato et al., 1986). Since this list was compiled, a number of new species have been described, while others, such as C. tetanomorphum and C. cylindrosporum, have been omitted (see Chapter 1). In this chapter the span of properties found among the Clostridia will be outlined. Additional information on the general taxonomy, the general properties of Clostridia, and clostridial fermentations may be found in a number of recent reviews (Barker, 1961, 1978, 1981; Wood, 1961; Thauer et al., 1977; Gottschalk and Andreesen, 1979; Gottschalk et al., 1981; Booth and Mitchell, 1987).


Corn Stover Clostridium Acetobutylicum Acetyl Coenzyme Genus Clostridium Clostridium Sporogenes 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abraham, L. J., Wales, A. J., and Rood, J. L., 1985, World-wide distribution of the conjugative Clostridium perfringens tetracycline resistance plasmid, pCW3, Plasmid 14:37–46.PubMedGoogle Scholar
  2. Adams, M. W. W., and Mortenson, L. E., 1985, Mo reductases: Nitrate reductase and formate dehydrogenase, in: Molybdenum Enzymes (T. G. Spiro, ed.), John Wiley and Sons, New York, pp. 519–593.Google Scholar
  3. Akedo, M., Cooney, C. L., and Sinskey, A. J., 1983, Direct demonstration of lactate-acrylate interconversion in Clostridium propionicum, Bio I Technology 1:791–794.Google Scholar
  4. Aleman, V., and Handler, P., 1967, Dihydroorotate dehydrogenase. I. General properties, J. Biol. Chem. 242:4087–4096.PubMedGoogle Scholar
  5. Andreesen, J. R., and Gottschalk, G., 1969, The occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum, Arch. Mikrobiol. 69:160–170.Google Scholar
  6. Andreesen, J. R., Gottschalk, G., and Schlegel, H. G., 1970, Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum, Arch. Mikrobiol. 72:154–174.PubMedGoogle Scholar
  7. Andreesen, J. R., Schaupp, A., Neurauter, G., Brown, A., and Ljungdahl, L. G., 1973, Fermentation of glucose, fructose and xylose by Clostridium thermoaceticum. Effects of metals on growth yield, enzymes and the synthesis of acetate from CO2, J. Bacteriol. 114:743–751.PubMedGoogle Scholar
  8. Andreesen, J. R., El Ghazzawi, E., and Gottschalk, G., 1974, The effects of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation, Arch. Microbiol. 96:103–118.Google Scholar
  9. Andreesen, J. R., Zindel, U., and Dürre, P., 1985, Clostridium cylindrosporum (ex Barker and Beck 1942) nom. rev., Int. J. Syst. Bacteriol. 35:206–208.Google Scholar
  10. Antranikian, G., and Giffhorn, F., 1987, Citrate metabolism in anaerobic bacteria, FEMS Microbiol. Rev. 46:175–198.Google Scholar
  11. Antranikian, G., Friese, C., Quentmeier, A., Hippe, H., and Gottschalk, G., 1984, Distribution of the ability for citrate utilization amongst Clostridia, Arch. Microbiol. 138:179–182.Google Scholar
  12. Antranikian, G., Herzberg, C., and Gottschalk, G., 1987, Production of thermostable α- amylase, pullulanase, and α-glucosidase in continuous culture by a new Clostridium isolate, Appl. Environ. Microbiol. 53:1668–1673.PubMedGoogle Scholar
  13. Avrova, N. P., 1975, Synthesis of pectolytic enzymes by Clostridium felsineum and their hydrolysis of the pectin substances of flax straw, Appl. Biochem. Microbiol. 11:736–741.Google Scholar
  14. Bache, R., and Pfennig, N., 1981, Selective isolation of Acetobacterium woodii on methoxylated aromatic acids and determination of growth yields, Arch. Microbiol. 130:255–261.Google Scholar
  15. Bader, J., and Simon, H., 1983, ATP formation is coupled to the hydrogenation of 2-enoates in Clostridium sporogenes, FEMS Microbiol. Lett. 20:171–175.Google Scholar
  16. Bader, J., Rauschenbach, P., and Simon, H., 1982, On a hitherto unknown fermentation path of several amino acids by proteolytic Clostridia, FEBS Lett. 140:67–72.PubMedGoogle Scholar
  17. Bahl, H., and Gottschalk, G., 1984, Parameters affecting solvent production by Clostridium acetobutylicum in continuous culture, Biotechnol. Bioeng. Symp. 14:215–223.Google Scholar
  18. Bahl, H., Gottwald, M., Kuhn, A., Rale, V., Andersch, W., and Gottschalk, G., 1986, Nutritional factors affecting the ratio of solvents produced by Clostridium acetobutylicum, Appl. Environ. Microbiol. 52:169–172.Google Scholar
  19. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., and Wolfe, R. S., 1979, Methanogens: Reevaluation of a unique biological group, Microbiol. Rev. 43:260–296.PubMedGoogle Scholar
  20. Barker, H. A., 1961, Fermentations of nitrogenous organic compounds, in: The Bacteria, Vol. 2, Metabolism (I. C. Gunsalus and R. Y. Stanier, eds.), Academic Press, New York, pp. 151–207.Google Scholar
  21. Barker, H. A., 1978, Explorations of bacterial metabolism, Ann. Rev. Biochem. 47:1–33.PubMedGoogle Scholar
  22. Barker, H. A., 1981, Amino acid degradation by anaerobic bacteria, Ann. Rev. Biochem. 50:23–40.PubMedGoogle Scholar
  23. Barker, H. A., and Wiken, T., 1948, The origin of butyric acid in the fermentation of threonine by Clostridium propionicum, Arch. Biochem. 17:149–151.Google Scholar
  24. Barker, H. A., D’Ari, L., and Kahn, J., 1987, Enzymatic reactions in the degradation of 5-aminovalerate by Clostridium aminovalericum, J. Biol. Chem. 262:8994–9003.Google Scholar
  25. Baumann, N. A., Hagen, P.-O., and Goldfine, H., 1965, Phospholipids of Clostridium butyricum. Studies on plasmalogen composition and biosynthesis, J. Biol. Chem. 240:1559–1567.PubMedGoogle Scholar
  26. Beesch, S. C., 1952, Acetone-butanol fermentation of sugars, Eng. Proc. Devel. 44:1677–1682.Google Scholar
  27. Bergere, J.-L., and Hermier, J., 1970, Spore properties of Clostridia occurring in cheese, J. Appl. Bacteriol. 33:167–179.PubMedGoogle Scholar
  28. Berry, D. F., Francis, A. J., and Bollag, J. M., 1987, Microbial metabolism of homocyclic and heterocyclic aromatic compounds under anaerobic conditions, Microbiol. Rev. 51:43–59.PubMedGoogle Scholar
  29. Bhat, J. V., and Barker, H. A., 1948, Tracer studies on the role of acetic acid and carbon dioxide in the fermentation of lactate by Clostridium lactoacetophilum, J. Bacteriol. 56:777–779.Google Scholar
  30. Bochner, B. R., and Savageau, 1979, Inhibition of growth by imidazol(on)e propionic acid: evidence in vivo for coordination of histidine catabolism with the catabolism of other amino acids, Mol. Gen. Genet. 168:87–95.PubMedGoogle Scholar
  31. Bogdahn, M., and Kleiner, D., 1986, Inorganic nitrogen metabolism in two cellulose-degrading Clostridia, Arch. Microbiol. 145:159–161.Google Scholar
  32. Bogdahn, M., Andreesen, J. R., and Kleiner, D., 1983, Pathways and regulation of N2, ammonium and glutamate assimilation by Clostridium formicoaceticum, Arch. Microbiol. 134: 167–169.Google Scholar
  33. Booth, I. R., 1985, Regulation of cytoplasmic pH in bacteria, Microbiol. Rev. 49:359–378.PubMedGoogle Scholar
  34. Booth, I. R., and Mitchell, W. J., 1987, Sugar transport and metabolism in the Clostridia, in: Sugar Transport and Metabolism in Gram-Positive Bacteria (J. Reizer and A. Peterkofsky, eds.), Ellis Horwood, Chichester, pp. 165–185.Google Scholar
  35. Bornstein, B. T., and Barker, H. A., 1948, The nutrition of Clostridium kluyveri, J. Bacteriol. 55: 223–230.Google Scholar
  36. Bradbeer, C., 1965, The clostridial fermentations of choline and ethanolamine. II. Requirement for a cobamide coenzyme by an ethanolamine deaminase, J. Biol. Chem. 240:4645–4681.Google Scholar
  37. Braun, M., Mayer, F., and Gottschalk, G., 1981, Clostridium aceticum (Wieringa), a microorganism producing acetic acid from molecular hydrogen and carbon dioxide, Arch. Microbiol. 128:288–293.PubMedGoogle Scholar
  38. Brefort, G., Magot, M., Ionesco, H., and Sebald, M., 1977, Characterization and transferability of Clostridium perfringens plasmids, Plasmid 1:52–66.PubMedGoogle Scholar
  39. Britz, M. L., and Wilkinson, R. G., 1982, Leucine dissimilation to isovaleric and isocaproic acids by cell suspensions of amino acid fermenting anaerobes: The Stickland reaction revisited, Can. J. Microbiol. 28:291–300.PubMedGoogle Scholar
  40. Bryant, M. P., 1972, Commentary on the Hungate technique for culture of anaerobic bacteria, Am. J. Clin. Nutr. 25:1324–1328.PubMedGoogle Scholar
  41. Buckel, W., 1980, Analysis of the fermentation pathways of Clostridia using double labelled glutamate, Arch. Microbiol. 127:167–169.PubMedGoogle Scholar
  42. Buckel, W., and Bobi, A., 1976, The enzyme complex citramalate lyase from Clostridium tetanomorphum, Eur. J. Biochem. 64:255–262.Google Scholar
  43. Buckel, W., and Miller, S. L., 1987, Equilibrium constants of several reactions involved in the fermentation of glutamate, Eur. J. Biochem. 164:565–569.PubMedGoogle Scholar
  44. Cameron, D. C., and Cooney, C. L., 1986, A novel fermentation: The production of R(-)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum, Bio/Technology 4:651–654.Google Scholar
  45. Cardon, B. P., and Barker, H. A., 1947, Amino acid fermentations by Clostridium propionicum and Diplococcus glycinophilus, Arch. Biochem. 12:165–180.Google Scholar
  46. Carter, J. E., and Sägers, R. D., 1972, Ferrous ion-dependent L-serine dehydratase from Clostridium acidi-urici, J. Bacteriol. 109:757–763.Google Scholar
  47. Cato, E. P., Moore, W. E. C., and Holdeman, L. V., 1968, Clostridium oroticum comb. nov. amended description, Int. J. Syst. Bacteriol. 18:9–13.Google Scholar
  48. Cato, E. P., George, W. L., and Finegold SPI, 1986, Genus Clostridium, in: Bergeys Manual of Systematic Bacteriology, Vol. 2 (P. H. A. Sreath, N. S. Mair, M. E. Sharpe, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1141–1200.Google Scholar
  49. Clifton, C. E., 1942, The utilization of amino acids and related compounds by Clostridium tetani, J. Bacteriol. 44:179–183.Google Scholar
  50. Cornet, P., Tronik, D., Millet, J., and Aubert, J. P., 1983, Characterization of two cel (cellulose degradation) genes of Clostridium thermocellum coding for endoglucanases. Bio/Technology 1:589–594.Google Scholar
  51. Cummins, C. S., 1970, Cell wall composition in the classification of gram-positive anaerobes, Int. J. Syst. Bacteriol. 20:413–419.Google Scholar
  52. Cummins, C. S., and Johnson, J. L., 1971, Taxonomy of the Clostridia: Wall composition and DNA homologies in Clostridium butyricum and other butyric-acid producing Clostridia, J. Gen. Microbiol. 67:33–46.Google Scholar
  53. Cunin, R., Glamsdorff, N., Pierard, A., and Stalon, V., 1986, Biosynthesis and metabolism of arginine in bacteria, Microbiol. Rev. 50:314–352.PubMedGoogle Scholar
  54. D’Ari, L., and Barker, H. A., 1985, p-Cresol formation by cell-free extracts of Clostridium difficile, Arch. Microbiol. 143:311–312.Google Scholar
  55. Dilworth, G. L., 1983, Occurrence of molybdenum in the nicotinic acid hydroxylase from Clostridium barkeri, Arch. Biochem. Biophys. 221:565–569.Google Scholar
  56. Dimroth, P., 1987, Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria, Microbiol. Rev. 51:320–340.PubMedGoogle Scholar
  57. Dorn, M., Andreesen, J. R., and Gottschalk, G., 1978a, Fermentation of fumarate and L-malate by Clostridium formicoaceticum, J. Bacteriol. 133:26–32.Google Scholar
  58. Dorn, M., Andreesen, J. R., and Gottschalk, G., 1978b, Fumarate reductase of Clostridium formicoaceticum. A peripheral membrane protein, Arch. Microbiol. 119:7–11.PubMedGoogle Scholar
  59. Dürre, P., and Andreesen, J. R., 1982a, Selenium-dependent growth and glycine fermentation by Clostridium purinolyticum, J. Gen. Microbiol. 128:1457–1466.Google Scholar
  60. Dürre, P., and Andreesen, J. R., 1982b, Separation and quantitation of purines and their anaerobic and aerobic degradation products by high-pressure liquid chromatography, Anal. Biochem. 123:32–40.PubMedGoogle Scholar
  61. Dürre, P., and Andreesen, J. R., 1983, Purine and glycine metabolism by purinolytic Clostridia, J Bacteriol. 154:192–199.PubMedGoogle Scholar
  62. Dürre, P., Andersch, W., and Andreesen, J. R., 1981, Isolation and characterization of an adenine utilizing, anaerobic sporeformer, Clostridium purinolyticum sp. nov., Int.]. Syst. Bacteriol. 31:184–194.Google Scholar
  63. Dürre, P., Spahr, R., and Andreesen, J. R., 1983, Glycine fermentation via glycine reductase in Peptococcus glycinophilus and Peptococcus magnus, Arch. Microbiol. 134:127–135.Google Scholar
  64. Eggerer, H., 1985, Completion of the degradation scheme for nicotinic acid by Clostridium barkeri, Curr. Top. Cell. Regul. 26:411–418.Google Scholar
  65. Eichler, B., and Schink, B., 1985, Fermentation of primary alcohols and diols and pure culture of syntrophically alcohol-oxidizing anaerobes, Arch. Microbiol. 143:60–66.Google Scholar
  66. Elsden, S. R., and Hilton, M. G., 1978, Volatile acid production from threonine, valine, leucine and isoleucine by Clostridia, Arch. Microbiol. 117:165-l72.PubMedGoogle Scholar
  67. Elsden, S. R., and Hilton, M. G., 1979, Amino acid utilization patterns in clostridial taxonomy, Arch. Microbiol. 123:137–141.PubMedGoogle Scholar
  68. Elsden, S. R., Hilton, M. G., and Waller, J. M., 1976, The end products of the metabolism of aromatic amino acids by Clostridia, Arch. Microbiol. 107:283–288.PubMedGoogle Scholar
  69. Elsden, S. R., Hilton, M. G., Parsley, K. R., and Self, R., 1980, The lipid fatty acids of proteolytic Clostridia, J. Gen. Microbiol. 118:115–123.Google Scholar
  70. Finn, C. W., Silver, R. P., Habig, W. H., Hardegree, M. C., Zon, G., and Garon, C. F., 1984, The structural gene for tetanus neurotoxin is on a plasmid, Science 224:881–884.PubMedGoogle Scholar
  71. Freier, D., and Gottschalk, G., 1987, (L+)-lactate dehydrogenase of Clostridium acetobutylicum is activated by fructose-1,6-bisphosphate, FEMS Microbiol. Lett. 43:229–233.Google Scholar
  72. Fryer, T. F., and Mead, G. C., 1979, Development of a selective medium for the isolation of Clostridium sporogenes and related organisms, J. Appl. Bacteriol. 47:425–431.PubMedGoogle Scholar
  73. Garnier, T., and Cole, S. T., 1988, Complete nucleotide sequence and genetic organization of the bacteriocinogenic plasmid, pIP 404, from Clostridium perfringens, Plasmid 19:134–150.Google Scholar
  74. George, H. A., Johnson, J. L., Moore, E. C., Holdeman, L. V., and Chen, J. S., 1983, Acetone, isopropanol, and butanol production by Clostridium beijerinckii (syn. Clostridium butylicum) and Clostridium aurantibutyricum, Appl. Environ. Microbiol. 45:1160–1163.Google Scholar
  75. Giesel, H., and Simon, H., 1983, On the occurrence of enoate reductase and 2-oxo-carboxylate reductase in Clostridia and some observations on the amino acid fermentation by Peptostreptococcus anaerobius, Arch. Microbiol. 135:51–57.Google Scholar
  76. Giffhorn, S., 1980, Verwertung von Methanol, Ethanol und Lactat durch Clostridium formicoaceticum, Diplomarbeit, Universität Göttingen.Google Scholar
  77. Golovchenko, N. P., Belokopytov, B. F., and Akimenko, V. K., 1982, Threonine catabolism in the bacterium Clostridium sticklandii, Biochemistry (USSR) 47:969–974.Google Scholar
  78. Gottschalk, G., 1986, Bacterial Metabolism, 2nd ed., Springer-Verlag, New York.Google Scholar
  79. Gottschalk, G., and Andreesen, J. R., 1979, Energy metabolism in anaerobes, in: International Review of Biochemistry, Vol. 21, Microbial Biochemistry (J. R. Quayle, ed.), University Park Press, Baltimore, pp. 85–115.Google Scholar
  80. Gottschalk, G., Andreseen, J. R., and Hippe, H., 1981, The genus Clostridium (nonmedical aspects), in: The Prokaryotes (M. P. Sarr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel, eds.), Springer-Verlag, Berlin, pp. 1767–1803.Google Scholar
  81. Gottwald, M., and Gottschalk, G., 1985, The internal pH of Clostridium acetobutylicum and its effect on the shift from acid to solvent formation, Arch. Microbiol. 193:42–46.Google Scholar
  82. Gottwald, M., Hippe, H., and Gottschalk, G., 1984, Formation of n-butanol from D-glucose by strains of Clostridium tetanomorphum group, Appl. Environ. Microbiol. 48(3):573–576.PubMedGoogle Scholar
  83. Gregory, E. M., Moore, W. E. C., and Holdemann, L. V., 1978, Superoxide dismutase in anaerobes: Survey. Appl. Environ. Microbiol. 35:988–991.PubMedGoogle Scholar
  84. van Gylswyk, N. O., and van der Toorn, J. J. T. K., 1987, Clostridium aerotolerans sp. nov., a xylanolytic bacterium from corn stover and from the rumina of sheep fed corn stover, Int. J. Syst. Bacteriol. 37:102–105.Google Scholar
  85. Habermann, E., and Dreyer, F., 1986, Clostridial neurotoxins: Handling and action at the cellular and molecular level, Curr. Top. Microbiol. Immunol. 129:93–180.PubMedGoogle Scholar
  86. Hammann, R., and Ottow, J. C. G., 1976, Isolation and characterization of iron-reducing nitrogen-fixing saccharolytic Clostridia from gley soils, Soil Biol. Biochem. 8:357–364.Google Scholar
  87. Hardman, J. K., and Stadtman, T. C., 1960a, Metabolism of ω-amino acids. I. Fermentation of γ-aminobutyric acid by Clostridium aminobutyricum n.sp., J. Bacteriol. 79:544–548.Google Scholar
  88. Hardman, J. K., and Stadtman, T. C., 1960b, Metabolism of ω-amino acids. II. Fermentation of δ-aminovaleric acid by Clostridium aminovalericum nov.sp., J. Bacteriol. 79:549–552.PubMedGoogle Scholar
  89. Hardman, J. K., and Stadtman, T. C., 1963, Metabolism of ω-amino acids. IV. γ-Aminobutyrate fermentation by cell-free extracts of Clostridium aminobutyricum, J. Biol. Chem. 238: 2088–2093.Google Scholar
  90. Hartmanis, M. G. N., and Stadtman, T. C., 1986, Diol metabolism and diol dehydratase in Clostridium glycolicum, Arch. Biochem. Biophys. 245:144–152.Google Scholar
  91. Hartrampf, G., and Buckel, W., 1986, On the steric course of the adenosyl cobalamin-dependent 2-methyleneglutarate mutase reaction in Clostridium barkeri, Eur. J. Biochem. 156: 301–304.Google Scholar
  92. Hefner, D. L., Squires, C. H., Evans, R. J., Kopp, B. J., and Yarus, M. J., 1984, Transformation of Clostridium perfringens, J. Bacteriol. 159:460–464.Google Scholar
  93. Hermann, M., Popoff, M. R., and Sebald, M., 1987, Sporomusa paucivorans sp. nov., a methylotrophic bacterium that forms acetic acid from hydrogen and carbon dioxide, Int. J. System. Bacteriol. 37:93–101.Google Scholar
  94. Hilton, M. G., Mead, G. C., and Elsden, S. R., 1975, The metabolism of pyrimidines by proteolytic Clostridia, Arch. Microbiol. 102:145–149.PubMedGoogle Scholar
  95. Holdeman, L. V., Cato, E. P., and Moore, W. E. C., 1977, Anaerobe laboratory manual, 4th ed., Anaerobe Laboratory, Virginia Polytechnic Institute and State University, Blacksburg.Google Scholar
  96. Holt, R. A., Cairns, A. J., and Morris, J. G., 1988, Production of butanol by Clostridium puniceum in batch and continuous culture, Appl. Microbiol. Biotechnol. 27:319–324.Google Scholar
  97. Hyun, H. H., and Zeikus, J. G., 1985, Simultaneous and enhanced production of thermostable amylases and ethanol from starch by cocultures of Clostridium thermosulfurogenes and Clostridium thermohydrosulfuricum, Appl. Environ. Microbiol. 49:1174–1181.PubMedGoogle Scholar
  98. Irnhoff, D., and Andreesen, J. R., 1979, Nicotinic acid hydroxylase from Clostridium barkeri: Selenium-dependent formation of active enzyme, FEMS Microbiol. Lett. 5:155–158.Google Scholar
  99. Jain, M. K., and Zeikus, J. G., 1988, Taxonomic distinction of two new protein specific, hydrolytic anaerobes: Isolation and characterization of Clostridium proteolyticum sp. nov. and Clostridium collagenovorans sp. nov., System. Appl. Microbiol. 10:134–141.Google Scholar
  100. Jellet, J. J., Forrest, T. P., Macdonald, I. A., Merric, T. J., and Holdeman, L. V., 1980, Production of indole-3-propanoic acid and 3-(p-hydroxyphenyl)propanoic acid by Clostridium sporogenes: A convenient thin layer chromatography detection system, Can. J. Microbiol. 26:448–453.PubMedGoogle Scholar
  101. Jeng, I. M., Somack, R., and Barker, H. A., 1974, Ornithine degradation in Clostridium sticklandii; pyridoxal phosphate and coenzyme A dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl coenzyme A, Biochemistry 13:2898–2903.PubMedGoogle Scholar
  102. Johnson, J. L., 1973, Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria, Int. J. Syst. Bacteriol. 23:308–315.Google Scholar
  103. Johnston, N. C., and Goldfine, H., 1988, Isolation and characterization of a novel four-chain ether lipid from Clostridium butyricum: The phosphatidylglycerol acetal of plasmenylethanolamine, Biochim. Biophys. Acta 961:1–12.PubMedGoogle Scholar
  104. Jungermann, K., Thauer, R. K., Leimenstoll, G., and Decker, K., 1973, Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia, Biochim. Biophys. Acta 305:268–280.PubMedGoogle Scholar
  105. Kaneuchi, C., Miyazato, T., Shinjo, T., and Mitsuoka, T., 1979, Taxonomic study of helically coiled, sporeforming anerobes isolated from the intestines of humans and other animals: Clostridium cocleatum sp. nov. and Clostridium spiroforme sp. nov., Int. J. Syst. Bacteriol. 29:1–12.Google Scholar
  106. Karlsson, S., Banhidi, Z. G., and Albertsson, A. C., 1988, Identification and characterization of alkali-tolerant Clostridia isolated from biodeteriorated casein-containing building materials, Appl. Microbiol. Biotechnol. 28:305–310.Google Scholar
  107. Keanealy, W. R., and Waselefsky, D. M., 1985, Studies on the substrate range of Clostridium kluyveri; the use of propanol and succinate, Arch. Microbiol. 141:187–194.Google Scholar
  108. Kerby, R., and Zeikus, J. G., 1983, Growth of Clostridium thermoaceticum on H2/CO2 or CO as energy source, Curr. Microbiol. 8:27–30.Google Scholar
  109. Kneifel, H., Stetter, K., O., Andreesen, J. R., Wiegel, J., König, H., and Schoberth, S. M., 1986, Distribution of polyamines in representative species of archaebacteria, System. Appl. Microbiol. 7:241–245.Google Scholar
  110. Koch, R., Zablowski, P., and Antranikian, G., 1987, Highly active and thermostable amylases and pullulanases from various anaerobic thermophiles, Appl. Microbiol. Biotechnol. 27: 192–198.Google Scholar
  111. Koser, S. A., 1968, Vitamin Requirements of Bacteria and Yeasts, Charles C Thomas, Springfield, IL.Google Scholar
  112. Krumholz, L. R., and Bryant, M. P., 1985, Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate, Int. J. Syst. Bacteriol. 35:454–456.Google Scholar
  113. Kubowitz, F., 1934, Über die Hemmung der Buttersäuregärung durch Kohlenoxyd, Biochem. Z. 274:285–298.Google Scholar
  114. Laanbroek, H. J., Lambers, J. T., De Vos, W. M., and Veldkamp, H., 1978, L-Aspartate fermentation by a free-living Campylobacter species, Arch. Microbiol. 117:109–114.PubMedGoogle Scholar
  115. Laanbroek, H. J., Smit, A. J., Klein Nulend, G., and Veldkamp, H., 1979, Competition for L-glutamate between specialised and versatile Clostridium species, Arch. Microbiol. 120:61–66.PubMedGoogle Scholar
  116. Lamed, R., Setter, E., Kenig, R., and Bayer, E. A., 1983, The cellulosome: A discrete cell surface organelle of Clostridium thermocellum which exhibits separate antigenic, cellulose-binding and various cellulolytic activities, Biotechnol. Bioeng. Symp. 13:163–181.Google Scholar
  117. Lebertz, H., 1984, Selenabhängiger Glycin-Stoffwechsel bei anaeroben Bakterien und vergleichende Untersuchungen zur Glycin-Reduktase und zur Glycin-Decarboxylase, PhD thesis, University of Göttingen.Google Scholar
  118. Lebertz, H., and Andreesen, J. R., 1988, Glycine fermentation by Clostridium histolyticum, Arch. Microbiol. 150:11–14.Google Scholar
  119. Lee, C. K., Dürre, P., Hippe, H., and Gottschalk, G., 1987, Screening for plasmids in the genus Clostridium, Arch. Microbiol. 148:107–114.Google Scholar
  120. Leonhardt, U., and Andreesen, J. R., 1977, Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum, Arch. Microbiol. 115:277–284.Google Scholar
  121. Lin, Y., and Blaschek, H. P., 1984, Transformation of heat treated Clostridium acetobutylicum protoplasts with pUBHO plasmid DNA, Appl. Environ. Microbiol. 48:737–742.PubMedGoogle Scholar
  122. Loesche, W. J., 1969, Oxygen sensitivity of various anaerobic bacteria, Appl. Microbiol. 18:723–727.PubMedGoogle Scholar
  123. Lovitt, R. W., Kell, D. B., and Morris, J. G., 1986, Proline reduction by Clostridium sporogenes is coupled to vectorial proton ejection, FEMS Microbiol. Lett. 36:269–273.Google Scholar
  124. Lund, B. M., and Brocklehurst, T. F., 1978, Pectic enzymes of pigmented strains of Clostridium, J. Gen. Microbiol. 104:59–66.Google Scholar
  125. Lundie, L. L., and Drake, H. L., 1984, Development of a minimally defined medium for the acetogen Clostridium thermoaceticum, J. Bacteriol. 159:700–703.PubMedGoogle Scholar
  126. Machacek-Pitsch, C., Rauschenbach, P., and Simon, H., 1985, Observations on the elimination of water from 2-hydroxy acids in the metabolism of amino acids by Clostridium sporogenes, Biol. Chem. Hoppe-Seyler 366:1057–1062.PubMedGoogle Scholar
  127. MacMillan, J. D., and Vaughn, R. H., 1964, Purification and properties of polygalacturonic acid trans-eliminase produced by Clostridium multifermentans. Biochemistry 3:564–572.PubMedGoogle Scholar
  128. Madi, E., Antranikian, G., Ohmiya, K., and Gottschalk, G., 1987, Thermostable amylolytic enzymes from a new Clostridium isolate, Appl. Environ. Microbiol. 53:1661–1667.PubMedGoogle Scholar
  129. Marks, C. L., and Freese, E., 1987, Aspects of carbohydrate metabolism related to sporulation and germination, in: Sugar Transport and Metabolism in Gram-Positive Bacteria (J. Reizer and A. Peterkowsky, eds.) Ellis Horwood Ltd., Chicester, pp. 295–332.Google Scholar
  130. Matteuzzi, D., Hollaus, F., and Biavati, B., 1978, Proposal of neotype for Clostridium thermohydrosulfuricum and the merging of Clostridium tartarivorum with Clostridium thermosaccharolyticum, Int. J. Syst. Bacteriol. 28:528–531.Google Scholar
  131. Mayer, F., 1988, Cellulosysis: ultrastructural aspects of bacterial systems, Electron Microsc. Rev. 1:69–85.PubMedGoogle Scholar
  132. Mayraud, D., and Bourgeau, G., 1982, Production of phenyl acetic acid by anaerobes, J. Clin. Microbiol. 16:747–750.Google Scholar
  133. Mead, G. C., 1971, The amino acid-fermenting Clostridia, J. Gen. Microbiol. 67:47–56.PubMedGoogle Scholar
  134. Mead, G. C., Adams, B. W., Hilton, M. G., and Lord, P. G., 1979, Isolation and characterization of uracil-degrading Clostridia from soil, J. Appl. Bacteriol. 46:465–472.PubMedGoogle Scholar
  135. Meister, A., Sober, H. A., and Tice, S. V., 1951, Enzymatic decarboxylation of aspartic acid to α-alanine, J. Biol. Chem. 189:577–590.PubMedGoogle Scholar
  136. Mitruka, B. M., and Costilow, R. N., 1967, Arginine and ornithine catabolism by Clostridium botulinum, J. Bacteriol. 93:295–301.Google Scholar
  137. Möller, B., Oßmer, R., Howard, B. H., Gottschalk, G., and Hippe, H., 1984, Sporomusa, a new genus of Gram-negative anaerobic bacteria including Sporomusa sphaeroides spec. nov. and Sporomusa ovata sp. nov., Arch. Microbiol. 139:388–396.Google Scholar
  138. Möller, B., Hippe, H., and Gottschalk, G., 1986, Degradation of various amine compounds by mesophilic Clostridia, Arch. Microbiol. 145:85–90.PubMedGoogle Scholar
  139. Morris, J. G., 1980, Oxygen tolerance/intolerance of anaerobic bacteria, in: Anaerobes and Anaerobic Infections (G. Gottschalk, N. Pfennig, and H. Werner, eds.), G. Fischer Verlag, Stuttgart, p. 7–15.Google Scholar
  140. Moss, C. W., Lambert, M. A., and Goldsmith, D. J., 1970, Production of hydrocinnamic acid by Clostridia, Appl. Microbiol. 19:375–378.PubMedGoogle Scholar
  141. Muldrow, L. L., Archib, E. R., Nunez-Montiel, O. L., and Sheehey, R. J., 1982, Survey of the extrachromosomal gene pool of Clostridium difficile, J. Clin. Microbiol. 16:137–640.Google Scholar
  142. Muth, W. L., and Costilow, R. N., 1974, Ornithine cyclase (deaminating). III. Mechanism of the conversion of ornithine to proline, J. Biol. Chem. 249:7463–7467.PubMedGoogle Scholar
  143. Naumann, E., Hippe, H., and Gottschalk, G., 1983, Betaine: New oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes-Methanosarcina barkeri coculture, Appl. Environ. Microbiol. 45:474–483.PubMedGoogle Scholar
  144. O’Brien, R. W., and Morris, J. G., 1971, 02 and the growth and metabolism of Clostridium acetobutylicum. J. Gen. Microbiol. 68:307–318.PubMedGoogle Scholar
  145. Oulevey, J., Bahl, H., and Thiele, O. W., 1986, Novel alk-1-enyl ether lipids isolated from Clostridium acetobutylicum, Arch. Microbiol. 144:166–168.Google Scholar
  146. Oultram, J. D., and Young, M., 1985, Conjugal transfer of plasmid pAMβ1 from Streptococcus lactis and Bacillus subtilis to Clostridium acetobutylicum, FEMS Microbiol. Lett. 27:129–134.Google Scholar
  147. Pan-Hou, H. S. K., Hosono, M., and Imura, N., 1980, Plasmid-controlled mercury biotransformation by Clostridium cochlearium T-2, Appl. Environ. Microbiol. 40:1007–1011.PubMedGoogle Scholar
  148. Parsot, C., 1986, Evolution of biosynthetic pathways: a common ancestor for threonine synthase, threonine dehydratase and D-serine dehydratase, EMBO.J. 5:3013–3019.PubMedGoogle Scholar
  149. Perkins, W. E., 1965, Production of clostridial spores, J. Appl. Bacteriol. 28:1–16.Google Scholar
  150. Pettigrew, D. W., Bidigare, R. R., Mehta, B. J., Williams, M. I., and Sander, E. G., 1985, Dihydrooratase from Clostridium oroticum. Purification and reversible removal of essential zinc, Biochem. J. 230:101–108.PubMedGoogle Scholar
  151. Pickett, M. J., 1943, Studies on the metabolism of Clostridium tetani, J. Biol. Chem. 151:203–209.Google Scholar
  152. Pheil, C. G., and Ordal, Z. J., 1967, Sporulation of the thermophilic anaerobes, Appl. Microbiol. 15:893–898.PubMedGoogle Scholar
  153. Prazmowski, A., 1880, Untersuchung über die Entwicklungsgeschichte und Fermentwirkung einiger Bakterien-Arten. Inaug. Diss. Hugo Voigt, Leipzig, pp. 1–58.Google Scholar
  154. Rabinowitz, J. C., 1963, Intermediates in purine breakdown, Meth. Enzymol. 6:703–713.Google Scholar
  155. Recsei, P. A., Moore, W. M., and Snell, E. E., 1983, Pyruvoyl-dependent histidine decarboxylase from Clostridium perfringens and Lactobacillus buchneri, J. Biol. Chem. 258:439–444.PubMedGoogle Scholar
  156. Reid, S. J., Allcock, E. R., Jones, D. T., and Woods, D. R., 1983, Transformation of Clostridium acetobutylicum protoplasts with bacteriophage DNA, Appl. Environ. Microbiol. 45:305–307.PubMedGoogle Scholar
  157. Rimbault, A., Niel, P., Virelizier, H., Darbord, J. C., and Leluan, G., 1988, L-Methionine, a precursor of trace methane in some proteolytic Clostridia, Appl. Environ. Microbiol. 54: 1581–1586.PubMedGoogle Scholar
  158. Roberts, T. A., 1967, Sporulation of mesophilic Clostridia, J. Appl. Bacteriol. 30:430–443.PubMedGoogle Scholar
  159. Rogers, P., 1986, Genetics and biochemistry of Clostridium relevant to development of fermentation processes, Adv. Appl. Microbiol. 31:1–60.Google Scholar
  160. Rosen, B. P., and Silver, S., 1987, Ion transport in proharyotes, Academic Press, San Diego.Google Scholar
  161. Rosenblum, E. D., and Wilson, P. W., 1950, Molecular hydrogen and nitrogen fixation by Clostridium, J. Bacteriol. 59:83–91.Google Scholar
  162. Schantz, E. J., and Sugiyama, H., 1974, Toxic protein produced by Clostridium botulinum, Agr. Food Chem. 22:26–33.Google Scholar
  163. Schiefer-Ullrich, H., Wagner, R., Dürre, P., and Andreesen, J. R., 1984, Comparative studies on physiology and taxonomy of obligately purinolytic Clostridia, Arch. Microbiol. 138:345–353.PubMedGoogle Scholar
  164. Schink, B., 1984a, Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch. Microbiol. 137:250–255.Google Scholar
  165. Schink, B., 1984b, Fermentation of tartrate enantiomers by anaerobic bacteria, and description of two new species of strict anaerobes, Ruminococcus pasteurii and Ilyobacter tartaricus, Arch. Microbiol. 139:409–414.Google Scholar
  166. Schink, B., and Zeikus, J. G., 1983, Characterisation of pectinolytic enzymes of Clostridium thermosulfurogenes, FEMS Microbiol. Lett. 17:295–298.Google Scholar
  167. Schink, B., Phelps, T. J., Eichler, B., and Zeikus, J. G., 1985, Comparison of ethanol degradation pathways in anoxic freshwater environments, J. Gen. Microbiol. 131:651–660.Google Scholar
  168. Schleifer, K. H., and Kandier, O., 1972, Peptidoglycan types of bacterial cell walls and their taxonomic implications, Bacteriol. Rev. 36:407–477.PubMedGoogle Scholar
  169. Schwartz, A. C., Quecke, W., and Brenschede, G., 1979, Inhibition by glycine of the catabolic reduction of proline in Clostridium sticklandii: Evidence on the regulation of amino acid reduction, Z. Allg. Mikrobiol. 19:211–220.Google Scholar
  170. Schwartz, W. H., Gräbnitz, F., and Staudenbauer, W. L., 1986, Properties of a Clostridium thermocellum endoglucanase produced in Escherichia coli, Appl. Environ. Microbiol. 51:1293–1299.Google Scholar
  171. Schweiger, G., Dutscho, R., and Buckel, W., 1987, Purification of 2-hydroxyglutaryl CoA-dehydratase from Acidaminococcus fermentam. An iron-sulfur protein, Eur. J. Biochem. 169: 441–448.PubMedGoogle Scholar
  172. Seto, B., 1980, The Stickland reaction, in: Diversity in Bacterial Respiratory Systems, Vol. 2 (C. J. Knowles ed.), CRC Press, Boca Raton, pp. 49–64.Google Scholar
  173. Simon, H., Bader, J., Günther, H., Neumann, S., and Thanos, J., 1985, Chirale Verbindungen durch biokatalytische Reduktionen, Angew. Chem. 97:541–555; Angew. Chem., Int. Ed. Engl. 24:539–553.Google Scholar
  174. Sleat, R., and Mah, R. A., 1985, Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor, Int. J. Syst. Bacteriol. 35:160–163.Google Scholar
  175. Sleat, R., Mah, R. A., and Robinson, R., 1984, Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov., Appl. Environ. Microbiol. 48:88–93.PubMedGoogle Scholar
  176. Sleytr, V. B., and Glauert, A. M., 1976, Ultrastructure of the cell walls of two closely related Clostridia that possess different regular arrays of surface subunits, J. Bacteriol. 126:869–882.PubMedGoogle Scholar
  177. Sliwkowski, M. X., and Stadtman, T. C., 1987, Purification and immunological studies of selenoprotein A of the clostridial glycine reductase complex, J. Biol. Chem. 262:4899–4904.PubMedGoogle Scholar
  178. Stieb, M., and Schink, B., 1985, Anaerobic oxidation of fatty acids by Clostridium bryantii sp.nov., a sporeforming, obligately syntrophic bacterium, Arch. Microbiol. 140:387–390.Google Scholar
  179. Stieb, M., and Schink, B., 1986, Anaerobic degradation of isovalerate by a defined meth-anogenic coculture, Arch. Microbiol. 144:291–295.Google Scholar
  180. Stouthamer, A. H., 1979, The search for correlation between theoretical and experimental growth yields, in: Microbial Biochemistry, Intern. Rev. Biochem., Vol. 21 (J. R. Quayle, ed.), University Park Press, Baltimore, pp. 1–47.Google Scholar
  181. Thauer, R. K., Kirchniawy, F. H., and Jungermann, K. A., 1972, Properties and function of the pyruvate-formate-lyase reaction in Clostridia, Eur. J. Biochem. 27:282–290.PubMedGoogle Scholar
  182. Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.PubMedGoogle Scholar
  183. Tokushigo, M., and Hayaishi, O., 1972, Threonine metabolism and its regulation in Clostridium tetanomorphum, J. Biochem. 72:469–477.Google Scholar
  184. Tran-Dinh, K., and Gottschalk, G., 1985, Formation of D(-)-l,2-propanediol and D(-)-lactate from glucose by Clostridium sphenoides under phosphate limitation, Arch. Microbiol. 142:87–92.Google Scholar
  185. Tschech, A., and Pfennig, N., 1984, Growth yield increase linked to caffeate reduction in Acetobacterium woodii, Arch. Microbiol. 137:163–167.Google Scholar
  186. Tschech, A., and Schink, B., 1985, Fermentative degradation of resorcinol and resorcylic acids, Arch. Microbiol. 143:52–59.Google Scholar
  187. Turner, D. C., and Stadtman, T. C., 1973, Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein, Arch. Biochem. Biophys. 154:366–381.PubMedGoogle Scholar
  188. Venugopalan, V., 1980, Influence of growth conditions on glycine reductase of Clostridium sporogenes, J. Bacteriol. 141:386–388.Google Scholar
  189. Vogels, G. D., and van der Drift, C., 1976, Degradation of purines and pyrimidines by microorganisms, Bacteriol. Rev. 40:403–468.PubMedGoogle Scholar
  190. Vollherbst-Schneck, K., Sands, J. A., and Montenecourt, B. S., 1984, Effect of butanol on lipid composition and fluidity of Clostridium acetobutylicum ATCC 824, Appl. Environ. Microbiol. 47:193–194.PubMedGoogle Scholar
  191. Waber, J. L., and Wood, H. G., 1979, Mechanism of acetate synthesis from CO2 by Clostridium acidiurici, J. Bacteriol. 140:468–478.PubMedGoogle Scholar
  192. Wachsman, J. T., and Barker, H. A., 1955, The accumulation of formamide during the fermentation of histidine by Clostridium tetanomorphum, J. Bacteriol. 69:83–88.PubMedGoogle Scholar
  193. Wagner, R., and Andreesen, J. R., 1987, Accumulation and incorporation of 185W-tungsten into proteins of Clostridium acidiurici and Clostridium cylindrosporum, Arch. Microbiol. 147:295–299.Google Scholar
  194. Wagner, R., Cammack, R., and Andreesen, J. R., 1984, Purification and characterization of xanthine dehydrogenase from Clostridium acidiurici grown in the presence of selenium, Biochim. Biophys. Acta 791:63–74.Google Scholar
  195. Weiss, N., Schleifer, K. H., and Kandier, O., 1981, The peptidoglycan types of Gram-positive anaerobic bacteria and their taxonomie implications, Rev. Inst. Pasteur (Lyon) 14:3–12.Google Scholar
  196. Whitmer, M. E., and Johnson, E. A., 1988, Development of improved defined media for Clostridium botulinum serotypes A, B, and E, Appl Environ. Microbiol. 54:753–759.PubMedGoogle Scholar
  197. Wickremasinghe, R. L., and Fry, B. A., 1954, The formation of urocanic acid and glutamic acid in the fermentation of histidine by Clostridium tetanomorphum, Biochem. J. 58:268–278.PubMedGoogle Scholar
  198. Wiegel, J., and Ljungdahl, L. G., 1979, Ethanol as fermentation product of extreme thermophilic anaerobic bacteria, in: Technische Mikrobiologie (H. Dellweg, ed.), Verlag Versuchs- und Lehranstalt für Spiritusfabrikation und Fermentationstechnologie im Institut für Gärungsgewerbe und Biotechnologie, Berlin, pp. 117–127.Google Scholar
  199. Wieringa, K. T., 1941, Über die Bildung von Essigsäure aus Kohlensäure und Wasserstoff durch anaerobe Bazillen, Brennstoff-Chemie 22:161–164.Google Scholar
  200. Wiesendanger, S., and Nisman, B., 1953, La L-méthionine démercapto-désaminase: Un nouvel enzyme ä pyridoxal-phosphate, Compt. Rend. Acad. Sci. 237:764–765.Google Scholar
  201. Willis, A. T., 1977. Anaerobic Bacteriology: Clinical and Laboratory Practice, 3rd ed., Butterworths, London.Google Scholar
  202. Winogradsky, S., 1895, Recherches sur l’assimilation de l’azote libre de 1’atmosphère par les microbes, Arch. Sci. Biol. 3:297–352.Google Scholar
  203. Wohlfarth, G., and Buckel, W., 1985, A sodium ion gradient as energy source for Peptostreptococcus asaccharolyticus, Arch. Microbiol. 142:128–135.PubMedGoogle Scholar
  204. Wood, W. A., 1961, Fermentation of carbohydrates and related compounds, in: The Bacteria, Vol. 2, Metabolism (I. C. Gunsalus and R. Y. Stanier, eds.), Academic Press, New York, 1961, pp. 59–149.Google Scholar
  205. Woods, D. D., and Clifton, C. E., 1937, Studies in the metabolism of the strict anaerobes (Genus Clostridium). VI. Hydrogen production and amino acid utilisation by Clostridium tetanomorphum, Biochem.J. 31:1774–1788.PubMedGoogle Scholar
  206. Yorifuji, T., Jeng, I. M., and Barker, H. A., 1977, Purification and properties of 3-keto-5-aminohexanoate cleaving enzyme from a lysine-fermenting Clostridium, J. Biol. Chem. 252: 20–31.PubMedGoogle Scholar
  207. Zindel, U., Freudenberg, W., Rieth, M., Andreesen, J. R., Schnell, J., and Widdel, F., 1988, Eubacterium acidaminophilum sp. nov., a versatile amino acid-degrading anaerobe producing or utilizing H2 or formate, Arch. Microbiol. 150:254–266.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jan R. Andreesen
    • 1
  • Hubert Bahl
    • 1
  • Gerhard Gottschalk
    • 1
  1. 1.Institut für MicrobiologieGeorg-August-UniversitätGöttingenFederal Republic of Germany

Personalised recommendations