Taxonomy and Phylogeny

  • Elizabeth P. Cato
  • Erko Stackebrandt
Part of the Biotechnology Handbooks book series (BTHA, volume 3)


Bacterial taxonomy is the science that makes logical and rational communication possible among all scientists, microbiologists, physicians, biochemists, and others; indeed, all people who need to know and use microbiological information. Combining, as it does, the arts of classification and identification with stringent rules of nomenclature, there is much that remains subjective in the selection of limits allowed in defining each taxon. However, with the explosion of information that is accumulating regarding the chemical and genetic composition of bacterial cells, it is now becoming possible to approach the definition of limits so as to include in a taxon, at the level of either genus or species, only organisms that are truly closely related.


Corn Stover Systematic Bacteriology Clostridium Botulinum Clostridial Species Genus Clostridium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aureli, P., Fenicia, L., Pasolini, B., Gianfranceschi, M., McCroskey, L. M., and Hatheway, C. L., 1986, Two cases of type E infant botulism in Rome caused by neurotoxigenic Clostridium butyricum, J. Infect. Dis. 154:207–211.PubMedCrossRefGoogle Scholar
  2. Andreesen, J. R., Zindel, V., and Dürre, P., 1985, Clostridium cylindrosporum (ex Barker and Beck 1942) nom. rev., Int. J. Syst. Bacteriol. 35:206–208.CrossRefGoogle Scholar
  3. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R., and Wolfe, R. S., 1979, Methanogens: Reevaluation of a unique biological group, Microbiol. Rev. 43:260–296.PubMedGoogle Scholar
  4. Barker, H. A., and Beck, J. V., 1942, Clostridium acidi-urici and Clostridium cylindrosporum, organisms fermenting uric acid and some other purines, J. Bacteriol. 43:291–304.PubMedGoogle Scholar
  5. Bergey, D. H., Harrison, F. C., Breed, R. S., Hammer, B. W., and Huntoon, F. M., 1923, Bergey’s Manual of Determinative Bacteriology, Williams and Wilkins, Baltimore, pp. 316–337.Google Scholar
  6. Cato, E. P., Hash, D. E., Holdeman, L. V., and Moore, W. E. C., 1982a, Electrophoretic study of Clostridium species, J. Clin. Microbiol. 15:688–702.PubMedGoogle Scholar
  7. Cato, E. P., Holdeman, L. V., and Moore, W. E. C., 1982b, Clostridium perenne and Clostridium paraperfringens: Later subjective synonyms of Clostridium barati, Int. J. Syst. Bacteriol. 32:77–81.CrossRefGoogle Scholar
  8. Cato, E. P., George, W. L., and Finegold, S. M., 1986, Genus Clostridium, in: Bergey’s Manual of Systematic Bacteriology (P. H. A. Sneath, N. S. Mair, M. E. Sharpe, and J. G. Holt, eds.), Williams and Wilkins, Baltimore, pp. 1141–1200.Google Scholar
  9. Chester, F. D., 1901, A Manual of Determinative Bacteriology, Macmillan, New York, pp. 295–394.Google Scholar
  10. Cummins, D. S., and Harris, H., 1956, The chemical composition of the cell wall in some gram-positive bacteria and its possible value as a taxonomic character, J. Gen. Microbiol. 14:583–600.PubMedCrossRefGoogle Scholar
  11. Cummins, C. S., and Johnson, J. L., 1971, Taxonomy of the Clostridia: Wall composition and DNA homologies in Clostridium butyricum and other butyric acid Clostridia, J. Gen. Microbiol. 67:33–46.CrossRefGoogle Scholar
  12. Dams, E., Huysmans, E., Vandenberghe, A., and De Wachter, R., 1987, Structure of clostridial 5R ribosomal RNAs and bacterial evolution, System. Appl. Microbiol. 9:54–61.CrossRefGoogle Scholar
  13. Dolman, C. E., and Chang, E., 1972, Bacteriophages of Clostridium botulinum, Can. J. Microbiol. 18:67–76.PubMedCrossRefGoogle Scholar
  14. Donis-Keller, H., Maxam, A. M., and Gilbert, W., 1977, Mapping adenines, guanines and pyrimidines in RNA. Nucl. Acids Res., 8:2527–2537.CrossRefGoogle Scholar
  15. Ecklund, M. W., Poysky, F. T., Reed, and Smith, C. A., 1971, Bacteriophage and the tox igenicity of Clostridium botulinum type C. Science 172:480–482.CrossRefGoogle Scholar
  16. Ecklund, M. W., Poysky, F. T., and Reed, S. M., 1972, Bacteriophage and the toxigenicity of Clostridium botulinum type D. Nature New. Biol. 235:16–17.Google Scholar
  17. Ecklund, M. W., Poysky, F. T., Peterson, M. E., and Myers, J. A., 1976, Infect. Immun. 14:793–803.Google Scholar
  18. Ellison, J. S., and Kautter, J.A., 1970. Purification and some properties of two boticins, J. Bacteriol. 104:19–26.PubMedGoogle Scholar
  19. Elsden, S. R., Hilton, M. G., Parsley, K. R., and Self, R., 1980, The lipid fatty acids of proteolytic Clostridia, J. Gen. Microbiol. 118:115–123.Google Scholar
  20. Fox, R. H., and McClain, D. E., 1974, Evaluation of the taxonomic relationship of Micrococcus cryophilus, Branhamella catarrhalis and Neisseriae by comparative Polyacrylamide gel electrophoresis of soluble proteins, Int. J. Syst. Bacteriol. 24:172–176.CrossRefGoogle Scholar
  21. Fox, G. E., and Stackebrandt, E., 1987, The application of 16S rRNA cataloguing and 5S rRNA sequencing in bacterial systematics, in: Methods in Microbiology, Vol. 19 (R. R. Colwell and R. Grigorova, eds.), Academic Press, Orlando, pp. 405–458.Google Scholar
  22. Fox, G. E., Pechman, K.J., and Woese, C. R., 1977, Comparative cataloguing of 16S ribosomal ribonucleic acid: Molecular approach to prokaryotic systematics. Int. J. Syst. Bacteriol., 27: 44–57.CrossRefGoogle Scholar
  23. Fox, G. E., Stackebrandt, E., Hespell, R. B., Gibson, J., Maniloff, J., Dyer, T. A., Wolfe, R. S., Balch, W. E., Tanner, R. S., Magrum, L. J., Zablen, L. B., Blakemore, R., Gupta, R., Bonen, L., Lewis, B. J., Stahl, D. A., Luehrsen, K. R., Chen, K., and Woese, C. R., 1980, The phylogeny of prokaryotes, Science 209:457–463.PubMedCrossRefGoogle Scholar
  24. Fujii, N., Oguma, K., Yokosawa, N., Kimura, K., and Tsuzuki, K., 1988, Characterization of bacteriophage nucleic acids obtained from Clostridium botulinum types C and D, Appl. Environ. Microbiol. 54:69–73.PubMedGoogle Scholar
  25. Hall, J. D., McCroskey, L. M., Pinkomb, B. J., and Hatheway, C. L., 1985, Isolation of an organism resembling Clostridium baratii which produces type F botulinal toxin from an infant with botulism, J. Clin. Microbiol. 21:654–655.PubMedGoogle Scholar
  26. Hammann, R., and Werner, H., 1980, Fermentation products (using g.l.c.) in the differentiation of non-sporing anaerobic bacteria, in: Microbial Classification and Identification (M. Goodfellow and R. G. Board, eds.), Academic Press, London, pp. 257–271.Google Scholar
  27. Handuroy, P., Ehringer, G., Urbain, A., Buillot, G., and Magron, J., 1937, Dictionnaire des Bacteries Pathogenes, Masson et Cie, Paris, pp. 89–144.Google Scholar
  28. Holdeman, L. V., and Brooks, J. B., 1970, Variation among strains of Clostridium botulinum and related Clostridia, in: Proceedings of the Botulism Conference, (M. Herzberg, ed.), UJNR Conference on Toxic Microorganisms, U.S. Govt. Printing Office, Washington, D.C., pp. 278–286.Google Scholar
  29. Holdeman, L. V., Cato, E. P., and Moore, W. E. C. (eds.), 1977, Anaerobic Laboratory Manual, 4th ed., Virginia Polytechnic Institute and State University, Blacksburg, VA.Google Scholar
  30. Horn, N., 1987, Clostridium disporicum sp. nov., a saccharolytic species able to form two spores per cell, isolated from a rat cecum, Int. J. Syst. Bacteriol. 37:398–401.CrossRefGoogle Scholar
  31. Inoue, K., and Iida, 1968, Bacteriophages of Clostridium botulinum, J. Virol. 2:537–540.PubMedGoogle Scholar
  32. Inoue, K., and Iida, H., 1971, Phage-conversion of toxigenicity in Clostridium botulinum types C and D. Jap. J. Med. Sci. Biol. 24:53–56.PubMedGoogle Scholar
  33. Johnson, J. L., 1970, Relationship of deoxyribonucleic acid homologies to cell wall structure, Int. J. Syst. Bacteriol. 20:421–424.CrossRefGoogle Scholar
  34. Johnson, J. L., 1973, Use of nucleic-acid homologies in the taxonomy of anaerobic bacteria, Int. J. Syst. Bacteriol. 23:308–315.CrossRefGoogle Scholar
  35. Johnson, J. L., 1985, DNA reassociation and RNA hybridization of bacterial nucleic acids, in: Methods in Microbiology, Vol. 18 (G. Gottschalk, ed.), Academic Press, London, pp. 34–74.Google Scholar
  36. Johnson, J. L., and Ordal, E. J., 1968, Deoxyribonucleic acid homology in bacterial taxonomy: Effect of incubation temperature on reaction specificity, J. Bacteriol. 95:893–900.PubMedGoogle Scholar
  37. Johnson, J. L., and Francis, B. S., 1975, Taxonomy of the Clostridia: Ribosomal ribonucleic acid homologie among the species, J. Gen. Microbiol. 88:229–244.PubMedCrossRefGoogle Scholar
  38. Kersters, K., and De Ley, J., 1980, Classification and identification of bacteria by electrophoresis of their proteins, in: Microbial Classification and Identification (Goodfellow, M., and Board, R. G., eds.), Academic Press, London, pp. 273–297.Google Scholar
  39. Krumholz, L. R., and Bryant, M. P., 1985, Clostridium pfennigii sp. nov. uses methoxyl groups of monobenzenoids and produces butyrate, Int. J. Syst. Bacteriol. 35:454–456.CrossRefGoogle Scholar
  40. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. L., and Pace, N. R., 1985, Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc. Natl. Acad. Sci. USA 82:6955–6959.PubMedCrossRefGoogle Scholar
  41. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, Y. B. D., Seeliger, H. P. R., and Clark, W. A. (eds.), 1975, International Code of Nomenclature of Bacteria, American Society for Microbiology, Washington, D.C.Google Scholar
  42. Lau, A. H. S., Hawirko, R. Z., and Chow, C. T., 1974, Purification and properties of boticin P produced by Clostridium botulinum, Can. J. Microbiol. 20:385–390.PubMedCrossRefGoogle Scholar
  43. Lee, W. H., and Riemann, H., 1970, Correlation of toxic and nontoxic strains of Clostridium botulinum by DNA composition and homology, J. Gen. Microbiol. 60:117–123.PubMedCrossRefGoogle Scholar
  44. Ludwig, W., Weizenegger, M., Kilpper-Bälz, R., and Schleifer, K. H., 1988, Phylogenetic relationships of anaerobic streptococci, Int. J. Syst. Bacteriol. 38:15–18.CrossRefGoogle Scholar
  45. Madden, R. H., 1983, Isolation and characterization of Clostridium stercorarium sp. nov., cellulolytic thermophile, Int. J. Syst. Bacteriol. 33:837–840.CrossRefGoogle Scholar
  46. Mahony, D. E., 1979, Bactericions, bacteriophage and other epidemiological typing methods for the genus Clostridium, in: Methods in Microbiology, Vol. 13 (T. Bergan and J. R. Norris, eds.), Academic Press, New York, pp. 1–30.Google Scholar
  47. Marmur, J., and Doty, P., 1961, Thermal renaturation of deoxyribonucleic acids, J. Mol. Biol. 3:585–594.PubMedCrossRefGoogle Scholar
  48. Marmur, J., and Doty, P., 1962, Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature, J. Mol. Biol. 5:109–118.PubMedCrossRefGoogle Scholar
  49. Mead, G. C., 1971, The amino acid-fermenting Clostridia, J. Gen. Microbiol. 67:47–56.PubMedCrossRefGoogle Scholar
  50. Moore, W. E. C., Cato, E. P., and Holdeman, L. V., 1966, Fermentation patterns of some Clostridium species, Int. J. Syst. Bacteriol. 16:383–415.CrossRefGoogle Scholar
  51. Moore, W. E. C., Hash, D. E., Holdeman, L. V., and Cato, E. P., 1980, Polyacrylamide slab gel electrophoresis of soluble proteins for studies of bacterial floras, Appl. Environ-Microbiol. 39:900–907.PubMedGoogle Scholar
  52. Moore, W. E. C., Cato, E. P., and Moore, L. V. H., 1985, Index of the bacterial and yeast nomenclatural changes published in the Int. J. Syst. Bacteriol. since the 1980 approved lists of bacterial names (January 1, 1980 to January 1, 1985), Int. J. Syst. Bacteriol. 35:382–407.CrossRefGoogle Scholar
  53. Morris, G. N., Winter, J., Cato, E. P., Ritchie, A. E., and Bokkenheuser, V. D., 1985, Clostridium scindens sp. nov., a human intestinal bacterium with desmolytic activity on certicoids, Int. J. Syst. Bacteriol. 35:478–481.CrossRefGoogle Scholar
  54. Moss, C. W., and Lewis, V.J., 1967, Characterization of Clostridia by gas chromatography. 1. Differentiation of species by cellular fatty acids, Appl. Microbiol. 15:390–397.PubMedGoogle Scholar
  55. Murray, W. D., Hofmann, L., Campbell, N. L., and Madden, R. H., 1986, Clostridium lentocellum sp. nov., a cellulolytic species from river sediment containing paper-mill waste, System. Appl. Microbiol. 8:181–184.CrossRefGoogle Scholar
  56. Nakamura, S., Shimamura, T., Hayashi, H., and Nishida, S., 1975, Reinvestigation of the taxonomy of Clostridium bifermentans and Clostridium sordelli, J. Med. Microbiol. 8:299–309.PubMedCrossRefGoogle Scholar
  57. Nakamura, S., Shimamura, T., and Nishida, S., 1976, Urease-negative strains of Clostridium sordellii, Can. J. Microbiol. 22:673–676.PubMedCrossRefGoogle Scholar
  58. Oren, A., Weisburg, W. G., Kessel, M., and Woese, C. R., 1984, Halobacteroides halobius gen. nov, spec, nov., a moderately halophilic, obliatory anaerobic bacterium from the bottom sediments of the Dead Sea. Syst. Appl. Microbiol. 5:58–70.CrossRefGoogle Scholar
  59. Oren, A., Pohla, H., and Stackebrandt, E., 1987, Transfer of Clostridium lortetii to a new genus Sporohalobacter gen. nov as Sporohalobacter lortetii comb. nov., and description of Sporohalobacter marismortui sp. nov., System. Appl. Microbiol, 9:239–246.CrossRefGoogle Scholar
  60. Palleroni, N.J., Kunisawa, R., Contopoulou, R., and Doudoroff, M., 1973, Nucleic and homologies in the genus Pseudomonas. Int. J. Syst. Bacteriol. 23:333–339.CrossRefGoogle Scholar
  61. Patel, K. C., Monk, C., Littleworth, H., Morgan, H. W., and Daniel, R. M., 1987, Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile, Int. J. Syst. Bacteriol. 37:123–126.CrossRefGoogle Scholar
  62. Peattie, D. A., 1979, Direct chemical method for sequencing RNA. Proc. Natl. Acad. Sci USA 76:1760–1764.PubMedCrossRefGoogle Scholar
  63. Petitdemange, E., Caillet, F., Giallo, J., and Gaudin, C., 1984, Clostridium cellulolyticum sp. nov., a cellulolytic, mesophilic species from decayed grass, Int. J. Syst. Bacteriol. 34:155–159.CrossRefGoogle Scholar
  64. Prazmowski, A., 1880, Untersuchung über die Entwicklungsgeschichte und Fermentwirkung einiger Bakterien, Arten. Inaug. Diss. Hugo Voigt, Leipzig, pp. 1–58.Google Scholar
  65. Prévot, A. R., 1938, Etudes de systématique bactérienne IV, Critique de la conception actuelle du genre Clostridium, Ann. Inst. Pasteur (Paris) 61:72–91.Google Scholar
  66. Prévot, A. R., 1940, Manual de Classification et de Détermination des Bactéries Anaérobies. Masson et Cie, Paris, pp. 87–169.Google Scholar
  67. Pribula, C. D., Fox, G. E., and Woese, C. R., 1976, Nucleotide sequence of Clostridium pasteurianum 5S rRNA, FEBS Lett., 64:350–352.PubMedCrossRefGoogle Scholar
  68. Reanney, D. C., and Ackermann, H.-W., 1982, Comparative biology and evolution of bacteriophages, in: Advances in Virus Research, Vol. 27 (M. A. Lauffes, F. B. Bang, K. Gavamorosch, and K. G. Smith, eds.), Academic Press, New York, pp. 205–280.Google Scholar
  69. Riemann, H., and W. H. Lee, 1970, The genetic relatedness of proteolytic Clostridium botulinum strains, J. Gen. Microbiol. 64:85–90.PubMedCrossRefGoogle Scholar
  70. Rogers, M. J., Simmons, J., Walker, R. T., Weisburg, W. G., Woese, C. R., Tanner, R. S., Robinson, I. M., Stahl, D. A., Olsen, G. J., Leach, R. H., Maniloff, J., 1985, Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data, Proc. Natl. Acad. Sci. USA 82:1160–1164.PubMedCrossRefGoogle Scholar
  71. Schink, B., 1984, Clostridium magnum sp. nov., a non-autotrophic homoacetogenic bacterium. Arch. Microbiol. 137:250–255.CrossRefGoogle Scholar
  72. Schleifer, K. H., and Kandier, O., 1972, Peptidoglycan types of bacterial cell walls and their taxonomie implications. Bacteriol. Rev. 36:407–477.PubMedGoogle Scholar
  73. Schleifer, K. H., and E. Stackebrandt, 1983, Molecular systematics of prokaryotes, Ann. Rev. Microbiol. 37:143–187.CrossRefGoogle Scholar
  74. Skerman, V. B. D., McGowan, V., and Sneath, P. H. A. (ed.), 1980, Approved lists of bacterial names, Int. J. Syst. Bacteriol. 30:225–420.CrossRefGoogle Scholar
  75. Sleat, R., and Mah, R. A., 1985, Clostridium populeti sp. nov., a cellulolytic species from a woody-biomass digestor, Int. J. Syst. Bacteriol. 35:160–163.CrossRefGoogle Scholar
  76. Sleat, R., Mah, R. A., and Robinson, R., 1984, Isolation and characterization of an anaerobic, cellulolytic bacterium, Clostridium cellulovorans sp. nov., Appl. Environ. Microbiol. 48:88–93.PubMedGoogle Scholar
  77. Smith, L. D.S., 1977, Botulism: the Organism, Its Toxins, The Disease, Charles C. Thomas, Springfield, Ill.Google Scholar
  78. Stackebrandt, E., 1988, Phylogenetic relationships vs. phenotypic diversity: how to achieve a phylogenetic classification system of the eubacteria, Can. J. Microbiol. 34:552–556.PubMedCrossRefGoogle Scholar
  79. Stackebrandt, E., and Woese, C. R., 1981, The evolution of prokaryotes, in: Molecular and Cellular Aspects of Microbial Evolution (M. I. Carlile, I. F. Collins, and B. E. B. Moseley, eds.), Cambridge University Press, Cambridge, pp. 1–31.Google Scholar
  80. Stackebrandt, E., and Woese, C. R., 1984, The phylogeny of prokaryotes. Microbiol. Sci. 1: 117–122.PubMedGoogle Scholar
  81. Stackebrandt, E., Ludwig, W., and Fox, G. E., 1985a, 16S ribosomal RNA oligonucleotide cataloguing, in: Methods in Microbiology, Vol. 18 (G. Gottschalk, ed.), Academic Press, Orlando, pp. 75–107.Google Scholar
  82. Stackebrandt, E., Pohla, H., Kroppenstedt, R., Hippe, H., and Woese, C. R., 1985b, 16S rRNA analysis of Sporomusa, Selenomonas, and Megasphaera: On the phylogenetic origin of gram-positive eubacteria. Arch. Microbiol. 143:270–276.CrossRefGoogle Scholar
  83. Stieb, M., and Schink, B., 1985, Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium, Arch. Microbiol. 140:387–390.CrossRefGoogle Scholar
  84. Suen, J. C., Hatheway, C. L., Steigerwalt, A. G., and Brenner, D. J., 1988, Clostridium argentinense sp. nov.: A genetically homogenous group composed of all strains of Clostridium botulinum toxin type G, and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme, Int. J. Syst., Bacteriol. 38:375–381.CrossRefGoogle Scholar
  85. Tanner, R. S., Stackebrandt, E., Fox, G. E., and Woese, C. R., 1981, A phylogenetic analysis of Acetobacterium woodii, Clostridium barkeri, Clostridium butyricum, Clostridium lituseburense, Eubacterium limosum, and Eubacterium tenue, Curr. Microbiol, 5:35–38.CrossRefGoogle Scholar
  86. Tanner, R. S., Stackebrandt, E., Fox, G. E., Gupta, L. J., Magrum, L. J., and Woese, C. R., 1982, A phylogenetic analysis of anaerobic eubacteria capable of synthesizing acetate from carbon dioxide., Curr. Microbiol. 7:127–132.CrossRefGoogle Scholar
  87. van Gylswyk, N. O., and van der Toorn, J. J. T. K., 1987, Clostridium aerotolerans sp. nov., a xylanolytic bacterium from corn stover and from the rumina of sheep fed corn stover, Int. J. Syst. Bacteriol. 37:102–105.CrossRefGoogle Scholar
  88. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandier, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E., Stackebrandt, E., Starr, M. P., and Trüper, H. G., 1987, Report of the ad hoc committee on reconciliation of approaches to bacterial systematics., Int. J. Syst. Bacteriol. 37:463–464.CrossRefGoogle Scholar
  89. Weinberg, M., Nativelle, R., and Prévot, A. R., 1937, Les Microbes Anaérobies, Masson et Cie, Paris, pp. 120–515.Google Scholar
  90. Weiss, N., Schleifer, K. H., and Kandier, O., 1981, The peptidoglycan types of grampositive anaerobic bacteria and their taxonomic implications, Rev. Inst. Pasteur de Lyon 14:3–12.Google Scholar
  91. Woese, C. R., 1987, Bacterial evolution, Microbiol. Rev. 51:221–271.PubMedGoogle Scholar
  92. Woese, C. R., and Fox, G. E., 1977, Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA 74:5088–5090.PubMedCrossRefGoogle Scholar
  93. Woese, C. R., Debrunner-Vossbrinck, B., Oyaizu, H., Stackebrandt, E., and Ludwig, W., 1985a, Gram-positive bacteria: Possible photosynthetic ancestry, Science 229:762–765.PubMedCrossRefGoogle Scholar
  94. Woese, C. R., Stackebrandt, E., and Ludwig, W., 1985b, What are mycoplasmas: The relationship of tempo and mode in bacterial evolution, J. Molec. Evol. 21:305–316.CrossRefGoogle Scholar
  95. Wu, J. I. J., Riemann, H., and Lee, W. H., 1972, Thermal stability of the deoxyribonucleic acid hybrids between proteolytic strains of Clostridium botulinum and Clostridium sporogenes. Can. J. Microbiol. 18:97–99.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Elizabeth P. Cato
    • 1
  • Erko Stackebrandt
    • 2
  1. 1.Department of Anaerobic MicrobiologyVirginia Polytechnic Institute and State UniversityBlacksburgUSA
  2. 2.Institute for General MicrobiologyChristian Albrechts University-KielKielFederal Republic of Germany

Personalised recommendations