Advertisement

Abstract

Uranium decays through a number of radioactive daughter isotopes, some of which have half-lives comparable to the time scale of prehistoric archaeology. The growth of these isotopes in naturally occurring materials at archaeological sites can be used to determine the age of sites. The growth of 230Th from its parent, 234U, can be used over a time range from a few hundred to half a million years. Calcite precipitated from running or dripping water in springs and caves, as well as marls and soil-deposited calcretes may be spatio-temporally associated with archaeological materials; they can be dated by 230Th/234U and 234U/238U measurements with a precision of ±5–10% of the age (by alpha counting) or ±1% (by mass spectrometry). Bones, teeth, mollusk and egg shells, are also datable but present problems due to migration of parent U in and out of the samples during their burial history.

Keywords

Electron Spin Resonance Archaeological Site Tooth Enamel Mollusk Shell Archaeological Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aldhouse-Green, S., Scott, K., Bevins, R., Grün, R., Housley, R., Rae, Angela, Redknap, M. and Schwarcz, H.P. 1994 Coygan Cave, a Mousterian Site and Hyaena Den: A Report on the University of Cambridge Excavations. Wales, National Museum of Wales.Google Scholar
  2. Bar-Matthews, M., Wasserburg, G.J., and Chen, J.H. 1993 Diagenesis of fossil coral skeletons: correlations between trace elements, textures and U-234/U238. Geochimica et Cosochimca Acta 57: 257–276.CrossRefGoogle Scholar
  3. Bard, E., Hamelin, B., Fairbanks, R.G. and Zindler, A. 1990 Calibration of the 14C timescale over the past 30,000 years using mass spectrometric U-Th ages from Barbados corals. Nature 345: 405–410.CrossRefGoogle Scholar
  4. Bischoff, J.L., and Fitzpatrick, J.A. 1990 U-series dating of impure carbonates: An isochron technique using total sample dissolution. Geochimica et Cosochimca Acta 55: 543–554.CrossRefGoogle Scholar
  5. Bischoff, J.L., Garcia, J.F., and Straus, L.G. 1992 Uranium-series dating at El Castillo Cave (Cantabria, Spain): The “Acheulian”/“Mousterian” question. Journal of Archaeological Science 19: 49–62.CrossRefGoogle Scholar
  6. Bischoff, J.L. Julia, R., and Mora, R. 1988 Uranium-series dating of the Mousterian occupation at Abric Romani, Spain. Nature 332: 68–70.CrossRefGoogle Scholar
  7. Blackwell, B., and Schwarcz, H. P. 1986 Absolute age of the Lower Travertine at Ehringsdorf DDR. Quaternary Research 25: 215–222.CrossRefGoogle Scholar
  8. Blackwell, B. and Schwarcz, H.P. 1990 Uranium series dating of travertines from Abri Vaufrey. In Rigaud, J. P., ed., Memoire de la Societé Préhistorique Française 19: 365-379.Google Scholar
  9. Blackwell, B., Schwarcz, H.P. and Debenath, A. 1983 Absolute dating of hominids and Paleolithic artifacts of the cave of La Chaise-de-Vouthon (Charente), France. Journal of Archaeological Science 10: 493–513.CrossRefGoogle Scholar
  10. Brunnacker, K. Jäger, K.D. Hennig, G.J., Preuss, J., and Grün, R. 1983 Radiometrische Untersuchungen zur Datierung mitteleuropäischer Travertin-vorkommen. Ethographisch-Ar-chäologische Zeitschrift 24: 217–266.Google Scholar
  11. Butzer, K. 1981 Cave sediments, Upper Pleistocene stratigraphy and Mousterian faciès in Cantabrian Spain. Advances in Old World Archaeology 5: 201–252.Google Scholar
  12. Cherdyntsev, VV. 1971 Uranium-234. Jerusalem, Israel Program for Scientific Translation.Google Scholar
  13. Cherdyntsev, V.V., Senina, Y. and Kuz’mina, Ye.A. (1975) Die Alterbestimmung der Travertin von Weimar-Ehringsdorf. Abhandlungen des Zentralen Geologischen Instituts 23: 7–14.Google Scholar
  14. Condomines, M., Hemond, C. and Allègre, C.J. 1988 U-Th-Ra radioactive disequilibria and magmatic processes. Earth and Planetary Sciences Letters 90: 243–262.CrossRefGoogle Scholar
  15. Deacon, H., Gelijnse, V., Thackeray, A., Thackeray, J., Tusenius, M., and Vogel, J. 1986 Late Pleistocene cave deposits in the southern Cape: current research at Klasies River, South Africa. Palaeoecology Africa 17: 31–7.Google Scholar
  16. Edwards, L., Chen, J.H. and Wasserburg, G.J. 1986 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500,000 years. Earth and Planetary Sciences Letters 81: 175–192.CrossRefGoogle Scholar
  17. Gewelt, M., Schwarcz, H.P. and Szabo, B.J. 1992 Datations 230Th/234U et 14C de concrétions stalagmitiques. In Otte, M., ed. Recherches aux Grottes de Sclayn. I. Le Contexte. Etudes et Recherches Archaeologie de l’Universit de Liege 27: 159–172. Liege, l’Universit de Liege.Google Scholar
  18. Grün R., Brunnacker K., and Hennig G.J. 1982 Th230/U234-daten mittel-und jungpleistozaner travertine im Raum Stuttgart. Jber. Mitt. Oberrrhein. Geol. Ver., N. F. 64: 201–211.Google Scholar
  19. Grün, R., Schwarcz, H. P. and Chadam, J. 1988a ESR dating of tooth enamel: Coupled correction for U-uptake and U-series disequilibrium. Nuclear Tracks and Radiation Measurement 14: 237–241.CrossRefGoogle Scholar
  20. Grün, R., Schwarcz, H. P., Ford, D. C., and Hentsch, B. 1988b ESR dating of spring-deposited travertines. Quaternary Science Reviews 7: 429–432.CrossRefGoogle Scholar
  21. Ivanovich, M. and Harmon, R.S. eds. 1992 Uranium Series Disequilibrium: Application to Environment Problems in the Earth Sciences, 2nd ed., Oxford, Oxford University Press.Google Scholar
  22. Ivanovich, M., Latham, A. and Ku, T.-L. 1992 Uranium-series disequilibrium applications in geochronology. In Ivanovich, M. and Harmon, R.S., eds., Uranium Series Disequilibrium: Application to Environment Problems in the Earth Sciences, 2nd ed., Oxford, Oxford University Press: 62–94.Google Scholar
  23. Hennig, G. and Hours, F. 1982 Dates pour le passage entre l’Acheuleen et le Paleolithique Moyen a El Kwom (Syrie). Paleorient 8: 81–83.CrossRefGoogle Scholar
  24. Julia, R. and Bischoff, J.L. 1991 Radiometric dating of Quaternary deposits and the hominid mandible of Lake Banyolas, Spain. Journal of Archaeological Science 18: 707–722.CrossRefGoogle Scholar
  25. Kaufman, A., Broecker, W.S., Ku, T.L. and Thurber, D.L. 1971 The status of U-series methods of mollusk dating. Geochimica Cosmochimica Acta 35: 1155–1189.CrossRefGoogle Scholar
  26. Luo, S. and Ku, T.-L. 1990 U-series isochron dating: A generalized method employing total-sample dissolution. Geochimica et Cosmochimica Acta 55: 555–564.CrossRefGoogle Scholar
  27. McDermott F., Grun R., Stringer, C.B. and Hawkesworth, C.J. 1993 Mass-spectrometric U-series dates for Israeli Neanderthal/early modern hominid sites. Nature 363: 252–255.CrossRefGoogle Scholar
  28. McKinney, C. R. 1992 The determination of the reliability of uranium series dating of enamel, dentine, and bone. Ph.D. dissertation, Southern Methodist University.Google Scholar
  29. McKinney, C.R. 1993 Bir Tarfawi: a stratigraphic test of uranium-series dating of tooth enamel. In Wendorf, F., Close, A. and Schild, H., eds., Egypt During the Last Interglacial. New York, Plenum: 218–223.CrossRefGoogle Scholar
  30. Schwarcz, H. P. 1980 Absolute age determination of archaeological sites by uranium series dating of travertine. Archaeometry 22: 3–25.CrossRefGoogle Scholar
  31. Schwarcz, H. P. 1983 Uranium-series dating and stable-isotope analyses of calcite deposits from Pontnewydd Cave. In Green, H. S., ed., Studies of Pontnewydd Cave, Wales. National Museum of Wales: 88-97.Google Scholar
  32. Schwarcz, H. P. 1989 Uranium series dating of quaternary deposits. Quaternary International 1: 7–17.CrossRefGoogle Scholar
  33. Schwarcz, H. P. 1992 Uranium series dating and the origin of modern man. Philosophical Transactions of the Royal Society of London B337: 131–137.CrossRefGoogle Scholar
  34. Schwarcz, H. P. 1993 Uranium series dating and the origin of modern man. In Aitken, M., Stringer, C.B. and Mellars, P.A., eds., The Origin of Modern Humans and the Impact of Chronometric Dating. Princeton, University of Princeton Press: 12–26.Google Scholar
  35. Schwarcz, H.P., Bietti, A., Buhay, W.M., Stiner, M., Grün, R. and Segre, E. 1991a On the reexamination of Grotta Guattari: Uranium series and ESR dates. Current Anthropology 32: 313–316.CrossRefGoogle Scholar
  36. Schwarcz, H. P. and Blackwell, B. 1983 230Th/234U age of a Mousterian site in France. Nature 301: 236–237.CrossRefGoogle Scholar
  37. Schwarcz, H.P. and Blackwell, B. 1992 Archaeometry. Ch. 11 In Ivanovich, M. and Harmon, R.S. eds., Uranium Series Disequilibrium: Application to Environment Problems in the Earth Sciences, 2nd ed., Oxford, Oxford University Press: 513–552.Google Scholar
  38. Schwarcz, H.P., Buhay, W., Grün, R., Stiner, M., Kuhn, S. and Miller, G.H. 1991b Absolute dating of sites in coastal Lazio. Quaternaria Nova 1: 51–67.Google Scholar
  39. Schwarcz, H. P., Goldberg, P. and Blackwell, B. 1980 Uranium series dating of archaeological sites in Israel. Israel Journal of Earth Sciences 29: 157–165.Google Scholar
  40. Schwarcz, H. P. and Grün, R. 1993 Electron spin resonance (ESR) dating of the Lower Industry. In Singer, R., Wymer, J. J. and Gladfelter, B. G., eds., The Lower Paleolithic Site at Hoxne, England. Chicago, University of Chicago Press: 207–217.Google Scholar
  41. Schwarcz, H. P., Grün, R., Mania, D., Brunnacker, K., and Latham, A. G. 1988 The Bilzingsleben archaeological site: new dating evidence. Archaeometry 30: 5–17.CrossRefGoogle Scholar
  42. Schwarcz, H.P. and Latham, A.E. 1984 Uranium series age determinations of travertines from the site of Vertesszollos, Hungary. Journal of Archaeological Science 11: 327–336.CrossRefGoogle Scholar
  43. Schwarcz, H.P. and Latham, A.G. 1989 Dirty Calcites, 1. Uranium series dating of contaminated calcites using leachates alone. Isotope Geoscience 80: 35–43.CrossRefGoogle Scholar
  44. Schwarcz, H.P. and Morawska, L. 1993 Uranium-series dating of carbonates from Bir Tarfawi and Bir Sahara East. In Wendorf, F., Schild, R. and Close, A., eds. Egypt During the Last Interglacial. New York, Pleunum: 205–217.CrossRefGoogle Scholar
  45. Schwarcz, H.P. and Skoflek, I. 1982 New dates for the Tata, Hungary Paleolithic site. Nature 295: 590–591.CrossRefGoogle Scholar
  46. Shen, G. 1986 U-series dating from the Prince Cave, northern Italy. Archaeometry 28: 179–184.CrossRefGoogle Scholar
  47. Short, S.A., Lowson, R.T., Ellis, J. and Price, D.M. 1989 Thorium-uranium disequilibrium dating of Late Quaternary ferruginous concretions and rinds. Geochimica et Cosmochimica Acta 53: 1379–1389.CrossRefGoogle Scholar
  48. Stearns, C.E. 1984 Uranium-series dating and the history of sea level. In Mahaney, W.C., ed., Quaternary Dating Methods. Amsterdam, Elsevier: 53–66.CrossRefGoogle Scholar
  49. Szabo, B.J., McHugh, W.P., Schaber, G.G., Haynes, C.V. Jr., and Breed, C.S. 1989 Uranium-series dated authigenic carbonates and Acheulian sites in southern Egypt. Science 243: 1053–1056.CrossRefGoogle Scholar
  50. Vogel J.C., and Kronfeld J. 1980 A new method for dating peat. South African Journal of Science 76: 557–558.Google Scholar
  51. Yokoyama Y., and Nguyen H.-V. 1980 Direct and non-destructive dating of marine sediments, manganese nodules, and corals by high resolution gamma-ray spectrometry. In Saruhashi, K., ed., Isotope Marine Chemistry. Tokyo, Uchida-Rokaku: 235–265.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Henry P. Schwarcz
    • 1
  1. 1.School of Geography and GeologyMcMaster UniversityHamiltonCanada

Personalised recommendations