Advertisement

Abstract

This chapter reviews the basic elements of the radiocarbon (14C) dating method and summarizes three generations of 14C studies in archaeology. It considers in greater detail several major advances in 14C research including the extension of the calibration of the 14C time scale into the late Pleistocene, further detailed characterization of Holocene short-term perturbations (de Vries effects), and the development of accelerator mass spectrometry.

Keywords

Late Pleistocene Radiocarbon Date Accelerator Mass Spectrometry Accelerator Mass Spectrometry Interdisciplinary Perspective 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardsma, G.E. 1991 Radiocarbon and the Genesis Flood. El Cajon (California), Institute for Creation Research.Google Scholar
  2. Ajie, H.O., Kaplan, I.R., Hauschka, P.V., Kirner, D., Slota, P.J. Jr., and Taylor, R.E. 1992 Radiocarbon dating of bone osteocalcin: isolating and characterizing a non-collagen protein. Radiocarbon 34: 296–305.Google Scholar
  3. Alvarez, W. 1981 The early days of accelerator mass spectrometry. In Henning, W., Kutschera, W., Smither, R.K. and Yntema, J.L. eds., Symposium on Accelerator Mass Spectrometry. Argonne, Argonne National Laboratory: 1–15.Google Scholar
  4. Anbar, M. 1978 The limitations of mass spectrometric radiocarbon dating using CN ions. In Gove, H.E. ed., Proceedings of the First Conference on Radiocarbon Dating with Accelerators, Gove, H.E. ed., Rochester, University of Rochester: 152–155.Google Scholar
  5. Arnold, J.R. and Libby, W.F. 1949 Age determinations by radiocarbon content. Checks with samples of known age. Science 110: 678–680.CrossRefGoogle Scholar
  6. Arnold, J.R. and W.F. Libby 1950 Radiocarbon dates (September 1,1950). Chicago, University of Chicago, Institute for Nuclear Studies.Google Scholar
  7. Arnold, J.R. and WE Libby 1951 Radiocarbon dates. Science 113: 111–120.CrossRefGoogle Scholar
  8. Atkinson, R.J.C. 1975 British prehistory and the radiocarbon revolution. Antiquity 49: 173–177.Google Scholar
  9. Bard, E., Arnold, M., Fairbanks, R.G., and Hamelin, B. 1993a 230Th-234U and 14C ages obtained by mass spectrometry on corals. Radiocarbon 35: 191–199.Google Scholar
  10. Bard, E., Stuiver, M. and Shackleton N.J. 1993b How accurate are our chronologies of the past? In Eddy, A. and Oeschger, H. eds., Global Changes in the Perspective of the Past. New York, John Wiley and Sons.Google Scholar
  11. Barker, H. and Mackey, J. 1961 British Museum natural radiocarbon measurements III. Radiocarbon 3: 39–45.Google Scholar
  12. Becker, B. 1993 An 11,000-year German oak and pine dendrochronology for radiocarbon calibration. Radiocarbon 35: 210–213.Google Scholar
  13. Bennett, C.L., Beukens, R.P., Clover, M.R., Gove, H.E., Lieben, R.B., Litherland, A.E., Purser, K.H. and Sondheim W.E. 1977 Radiocarbon dating using accelerators: Negative ions provide the key. Science 198: 508–509.CrossRefGoogle Scholar
  14. Bennett, C. L., Beukens, R.P., Clover, M.R., Elmore, D., Gove, H.E., Kilius, L., Litherland, A.E. and Purser, K.H. 1978 Radiocarbon dating with electrostatic accelerators: Dating of milligram samples. Science 201: 345–347.CrossRefGoogle Scholar
  15. Berger, R. 1992 Libby’s UCLA Radiocarbon Laboratory: Contributions to archaeology. In Taylor, E., Long, A., Kra, R.S., eds., Radiocarbon After Four Decades An Interdisciplinary Perspective. New York, Springer-Verlag: 421–434.CrossRefGoogle Scholar
  16. Bertsche, K.J., Friedman, P.G., Morris, D.E., Muller, R.A. and Welch, J.J. 1987 Status of the Berkeley small cyclotron AMS project. Nuclear Instruments and Methods B29: 105–109.Google Scholar
  17. Bertsche, K.J. 1989 A small low energy cyclotron for radioisotope measurements. Ph.D. dissertation, University of California, Berkeley.CrossRefGoogle Scholar
  18. Broecker, W.S. and Kulp J.L. 1956 The radiocarbon method of age determination. American Antiquity 22: 1–11.CrossRefGoogle Scholar
  19. Bronk, C.R. and Hedges, R.E.M. 1987 A gas ion source for radiocarbon dating. Nuclear Instruments and Methods B29: 45–49.Google Scholar
  20. Brooks, S., Brooks, R.H., Kennedy, G.E., Austin, J., Firby, J.R., Payen, L.A., Prior, C. A., Slota, P.J., Jr., and Taylor, R. E. The Haverty Human Skeletons: Morphologial, Depositional and Geochronological Characteristics. Journal of California and Great Basin Anthropology 12: 60-83.Google Scholar
  21. Brown, R.H. 1983 The interpretation of carbon-14 age data. In Coffin, H.G. with Brown, R.H., eds., Origin by design. Washington, D.C., Review and Herald Publishing Association: 309–329.Google Scholar
  22. Brown, R.H. 1986 14C depth profiles as indicators of trends in climate and 14C/12C ratios. Radiocarbon 28: 350–357.Google Scholar
  23. Bruns, M., Levin, I., Munnish, K.O., Hubberten, H.W. and Fillipakis, S. 1980 Regional sources of volcanic carbon dioxide and their influence on 14C content of present-day plant material. Radiocarbon 22: 532–536.Google Scholar
  24. Burky, R.R. 1996 Radiocarbon dating archaeologically significant bone using gamma-carboxyglutamic acid (Gla) and alpha-carboxyglycine (aminomalonate). Ph.D. disseration, University of Califronia, Riverside.Google Scholar
  25. Chen, M., Li, D., Xu, S., Chen, G., Shen, L., Lu, X., Zhang, W., Zhang, Y., Zhong, Z., Zhang, Y. 1995 Breakthrough of the mini-cyclotron mass spectrometer for 14C analysis. Radiocarbon 37: 675–682.Google Scholar
  26. Clark, G. 1970 Aspects of prehistory. Berkeley, University of California Press.Google Scholar
  27. Cremo, M.A. and Thompson, R.L. 1993 Forbidden archeology, The hidden history of the human race. San Diego (California), Bhaktivedanta Institute.Google Scholar
  28. Damon, P.E., Donahue, D.J., Gord, B.H., Hatheway, A.L. Jull, A.J.T., Linick, T.W., Sercelo, P.J., Toolin, L.J., Bronk, C.R., Hall, E.T., Hedges, R.E.M., Housley, R., Law, I.A., Perry, C., Bonani, G., Trumbore, S., Wolfli, W., Ambers, J.C., Bowman, S.G.E., Leese, M.N. and Tite, M.S. 1989 Radiocarbon dating the shroud of Turin. Nature 337: 611–615.CrossRefGoogle Scholar
  29. Damon, P. E. and J. I. Jirikowic 1992 Solar forcing of global climate change? In Taylor, R.E., Long, A., and Kra, R. eds., Radiocarbon after four decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 177–179.Google Scholar
  30. Daniel, G. 1967 The origins and growth of archaeology. New York, Crowell.Google Scholar
  31. Daniel, G. 1972 Editorial. Antiquity 46: 265.Google Scholar
  32. Dillehay T.D. and Meltzer, D.J., eds. 1991 The First Americans: Search and Research. Baca Raton: CRC Press.Google Scholar
  33. Eddy, J. 1976 The Maunder minimum. Science 192: 1189–1202.CrossRefGoogle Scholar
  34. Edwards, R.L. 1993 A large drop in atmospheric 14C/12C and reduced melting in the Younger Dryas, documented with 230Th ages of corals. Science 260: 962–968.CrossRefGoogle Scholar
  35. Erlenkeuser, H. 1979 A thermal diffusion plan for radiocarbon isotope enrichment from natural samples. In Berger, R. and Suess, H.E., eds., Radiocarbon dating. Berkeley, University of California Press: 216–237.Google Scholar
  36. Gittins, G.O. 1984 Radiocarbon chronometry and archaeological thought. Ph.D. disseration, University of California, Los Angeles.Google Scholar
  37. Gove, H.E. 1992 The history of AMS, its advantages over decay counting: Applications and Prospects. In Taylor, R.E., Long, A., Kra, R.S., eds., Radiocarbon After Four Decades An Interdisciplinary Perspective. New York, Springer-Verlag: 214–229.CrossRefGoogle Scholar
  38. Grootes, P.M., Mook, W.G., Vogel, J.C., de Vries, A.E., Haring, A. and Kismaker, J. 1975 Enrichment of radiocarbon for dating samples up to 75,000 years. Zeitschrift fixer Naturforschung 30A: 1–14.Google Scholar
  39. Harbottle, G., Sayre, E.V. and Stoenner, R.W. 1979 Carbon 14 dating of small samples by proportional counting. Science 206: 683–685.CrossRefGoogle Scholar
  40. Hedges, R.E.M. and Gowlett, J.A.J. 1986 Radiocarbon dating by accelerator mass spectrometry. Scientific American 254: 100–107.CrossRefGoogle Scholar
  41. Johnson, F., 1965 The impact of radiocarbon ating upon archaeology. In Chatters, R.M. and Olson, E.A., eds., Proceedings of the Sixth International Conference radiocarbon and Tritium Dating. Springfield (Virginia): Clearinghouse for Federal Science and Technical Information: 762-780.Google Scholar
  42. Johnson, F. and MacNeish, R.S. 1972 Chronology of the Tehuacan Valley. In Byers, D.S., ed., Prehistory of the Techuacan Valley, vol. 4, Austin, University of Texas Press.Google Scholar
  43. Johnson, F. and Willis, E.H. 1970 Reconciliation of radiocarbon and sideral years in Meso-American chronology. In Olsson, I.U., ed., Radiocarbon variations and absolute chronology. Stockholm, Almqvist & Wiksell: 93–104.Google Scholar
  44. Kaufman, T.S. 1980 Early prehistory of the Clear Lake area, Lake County, California. Ph.D. dissertation, University of California, Los Angeles.Google Scholar
  45. Kirner, D., Taylor, R.E. and Southon, J.R. 1995 Reduction in backgrounds of microsamples for AMS 14C dating. Radiocarbon 37: 697–704.Google Scholar
  46. Kirner, D., Southon, J.R., Hare, P.E. and Taylor, R.E. 1996 Acclerator mass spectrometry radiocarbon measurement of submilligram samples. In Orna, M. V., ed., Archaeological Chemistry Organic, Inorganic, and Biochemical Analysis. Washington, D.C., American Chemical Society: 434–442.CrossRefGoogle Scholar
  47. Kirner, D., Burky, R., Taylor, R.E., and Southon, J.R. 1997 Radiocarbon dating organic residues at the microgram level. Nuclear Instruments and Methods in Physics Research, in press.Google Scholar
  48. Klein, J., Lerman, J.C., Damon, P.E. and Ralph, E.K. 1982 Calibration of radiocarbon dates: Tables based on the consensus data of the owrkshop on calibrating the radiocarbon time scale. Radiocarbon 24: 103–150.Google Scholar
  49. Kromer, B. and Becker, B. 1993 German Oak and pine 14C calibration, 7200-9439 BC. Radiocarbon 35: 125–135.Google Scholar
  50. Levin, I., Bosinger, R., Bonani, G., Francey, R.J., Kromer, B., Munnich, K.O., Suter, M., Trivett, N.B.A. and Wolfli, W. 1992 Radiocarbon in atmopsheric carbon dioxide and methane: Gloval Distribution and Trends. In Taylor, R.E., Long, A., and Kra, R., eds., Radiocarbon after four decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 503–518.CrossRefGoogle Scholar
  51. Libby, W.F. 1963 Accuracy of radiocarbon dates. Antiquity 37: 7–12.Google Scholar
  52. Linick, T.W., Damon, P.E., Donahue, D.J. and Jull, A.J.T. 1989 Accelerator mass spectrometry: The new revolution in radiocarbon dating. Quaternary International 1: 1–6.CrossRefGoogle Scholar
  53. Long, A., Benz, B.F., Donahue, D.J., Jull, A.J.T., and Toolin, L.J. 1989 First direct AMS dates on early Maize from Tehuacán, Mexico. Radiocarbon 31: 1035–1040.Google Scholar
  54. Long, A and Miller, A.B. 1981 Arizona radiocarbon dates X. Radiocarbon 23: 191–217.Google Scholar
  55. Lynch, T.F. 1990 Glacial-age man in South America: A critical review American Antiquity 55: 12–36.Google Scholar
  56. Mast, T.S. and Muller, R.A. 1980 Radioisotope detection and dating with accelerators. Nuclear Science Applications 1: 7–32.Google Scholar
  57. Mazaud, A., Laj, C., Bard, E., Arnold, M. and Tric, E. 1992 A geomagnetic calibration of the radiocarbon time-scale. In Bard, E. and Broecker, W.S., eds., The Last Deglaciation: Absolute and Radiocarbon Chronologies. Berlin: Springer-Verlag: 163–169.CrossRefGoogle Scholar
  58. Meltzer, D.J., Adovasio, J.M. and Dillehay, T.D. 1994 On a Pleistocene human occupation at Pedra Furada, Brazil. Antiquity 68: 695–714.Google Scholar
  59. Muller, R.A. 1977 Radioisotope dating with a cyclotron. Science 196: 489–494.CrossRefGoogle Scholar
  60. Muller, R.A. 1979 Radioisotope dating with accelerators. Physics Today 32(2): 23–30.CrossRefGoogle Scholar
  61. Muller, R.A., Stephenson, E.J. and Mast, T.S. 1978 Radioisotope dating with an accelerator: A blind measurement. Science 201: 347–348.CrossRefGoogle Scholar
  62. Nelson, D.E., Korteling, R.G. and Scott, W.R. 1977 Carbon-14: Direct detection at natural concentrations. Science 198: 507–508.CrossRefGoogle Scholar
  63. Neustupny, E. 1970 The accuracy of radiocarbon dating. In Olsson, I. U., ed., Radiocarbon variations and absolute chronology. Stockholm, Almqvist & Wiksell: 22–34.Google Scholar
  64. Nobel Foundation 1964 Nobel Lectures, Chemistry 1942–1962. Amsterdam, Elsevier.Google Scholar
  65. Oeschger, H., Houtermans, J., Loosli, H., and Wahlen, M. 1970 The constancy of cosmic radidation from isotope studies in meteorities and on the earth. In Olsson, I.U. ed., Radiocarbon variations and absolute chronology. Stockholm, Almqvist & Wiksell: 471–496.Google Scholar
  66. Otlet, R.L., Huxtable, G., Evans, G.V., Humphreys, D.G., Short, T.D. and Conchie, S.J. 1983 Development and operation of the Harwell small counter facility for the measurement of 14C in very small samples. Radiocarbon 25: 565–575.Google Scholar
  67. Payen, L.A. 1982 The pre-Clovis of North America: Temporal and artifactual evidence. Ph.D. dissertation, University of California, Riverside.Google Scholar
  68. Ralph, E.K., Michael, H.N. and Han, M.C. 1973 Radiocarbon dates and reality. MASCA Newsletter 9: 1–20.Google Scholar
  69. Rowe, J.H. 1965 An interpretation of radiocarbon measurements on archaeological samples from Peru. In Chatters, R.M. and Olson, E.A. eds., Proceedings of the Sixth International Conference Radiocarbon and Tritium. Springfield (Virignia), Clearinghouse for Federal Scientific and Technical Information: 187-198.Google Scholar
  70. Renfrew, C. 1973 Before civilization: the radiocarbon revolution and prehistoric Europe. New York: Alfred A. Knopf.Google Scholar
  71. Saupe, F., Strappa, O., Coppens, R., Guillet, B., and Jaegy, R. 1980 A possible source of error in 14C dates: Volcanic emanations (examples from the Monte Amiata District, Provinces of Gorsseto and Sienna, Italy) Radiocarbon 22: 525–531.Google Scholar
  72. Sayre, E.V., Harbottle, G., Stoenner, R.W., Otlet, R.L. and Evans, G.V. 1981 The use of the small gas proportional counters for the carbon 14 measurement of very small samples. IAEA Proceedings on Methods of Low Level Counting and Spectrometry Vienna, International Atomic Energy Agency: 393.Google Scholar
  73. Schmidt, F.H., Balsley, D.R. and Leach, D.D. 1987 Early expectations of AMS: Greater ages and tiny fraction. One failure?-One success. In Gove, H.E.A.E. Litherland, A.E. and Elmore, D. eds., Accelerator Mass Spectrometry. Amsterdam, North-Holland Physics Publishing: 97–99.Google Scholar
  74. Scott, E.M., Long, A., and Kra, R., eds. 1990 Proceedings of the International Workshop on Intercomparison of Radiocarbon Laboratories. Radiocarbon 32: 253–397.Google Scholar
  75. Southon, J.R., Deino, A.L, Orsi, G., Terrasi, R., and Campajola, L. 1995 Calibration of the radiocarbon time scale at 37Ka BP. Abstract of Papers, 209th American Chemical Society National Meeting, Part 2, p. 10.Google Scholar
  76. Stafford, T.W. Jr, Jull, A.J.T., Brendel, K., Duhamel, R.C. and Donahue, D. 1987 Study of bone radiocarbon dating accuracy at the University of Arizona NSF accelerator facility for radioisotope analysis. Radiocarbon 29: 24–44.Google Scholar
  77. Stafford, T.W., Hare, P.E., Currie, L., Jull, A.J.T. and Donahue, D.J. 1990 Accuracy of North American human skeleton ages. Quaternary Research 34: 111–120.CrossRefGoogle Scholar
  78. Stafford, T.W., Hare, P.E., Currie, L., Jull, A.J.T. and Donahue, D.J. 1991 Accelerator radiocarbon dating at the molecular level. Journal of Archaeological Science 18: 35–72.CrossRefGoogle Scholar
  79. Stuiver, M. and Braziunas, T.G. 1993 Modeling atmospheric 14C influences and 14C ages of marine samples to 10,000 BC. Radiocarbon 35: 137–189.Google Scholar
  80. Stuiver, M. and Reimer, P.J. 1993 Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215–230.Google Scholar
  81. Stuiver, M., Heusser, C.H. and Yang, I.C. 1978 North American galcial history extended to 75,000 years ago. Science 200: 16–21.CrossRefGoogle Scholar
  82. Stuiver, M., Long, A. and Kra, R.S., eds. Calibration 1993 Radiocarbon 35: 1–244.Google Scholar
  83. Stuiver, M. and Polach, H.A. 1977 Discussion: Repoorting of 14C data. Radiocarbon 19: 355–363.Google Scholar
  84. Stuiver, M. and Suess, H.E. 1966 On the relationship between radiocarbon dates and true sample ages. Radiocarbon 8: 534–540.Google Scholar
  85. Suess, H.E. 1970 Bristlecone-pine calibration of radiocarbon time 5200 B.C. to present. In Olsson, I.U., ed., Radiocarbon variations and absolute chronology. Stockholm, Almqvist & Wiksell: 303–312.Google Scholar
  86. Taylor, R.E. 1987 Radiocarbon dating An archaeological perspective. San Diego, Academic Press.Google Scholar
  87. Taylor, R.E. 1990 Radiocarbon dating. Encyclopedia of Physical Science and Technology, 1990 Yearbook. New York, Academic Press: 499–504.Google Scholar
  88. Taylor, R.E. 1991 Radioisotope dating by accelerator mass spectrometry: archaeological and paleoan-thropological perspectives. In Göksu, H.Y., Oberhofer, M., Regulloi, D., eds., Scientific Dating Methods. Dordrecht (Netherlands), Kluwer Academic Publishers: 37–54.Google Scholar
  89. Taylor, R.E. 1992 Radiocarbon dating of bone: To collagen and beyond. In Taylor, R.E., Long, A., and Kra, eds., Radiocarbon after four decades: An Interdisciplinary Perspective. New York, Springer-Verlag: 375–402.CrossRefGoogle Scholar
  90. Taylor, R.E. 1994 Radiocarbon dating of bone using accelerator mass spectrometry: Current discussions and future directions. In Bonnichsen, R. and Steele, D.G. eds., Method and Theory for Investigating the Peopling of the Americas. Corvallis, Center for the Study of the First Americans, Oregon State University: 27-44.Google Scholar
  91. Taylor, R.E., Long, A., and Kra, R. eds. 1992 Radiocarbon After Four Decades: An Interdisciplinary Perspective. New York, Springer-Verlag.Google Scholar
  92. Taylor, R.E., Donahue, D.J., Zabel, T.H., Damon, P.E. and Jull, A.T.J. 1984 Radiocarbon dating by particle accelerators: An archaeological perspective. In Lambert, J.B. ed., Archaeological Chemistry III. Washington, D.C., American Chemical Society: 333–356.CrossRefGoogle Scholar
  93. Taylor, R.E., Payen, L.A. and Slota, P.J., Jr. 1992 The age of the Calaveras Skull: Dating the “Piltdown Man” of the New World. American Antiquity 57: 269–275.CrossRefGoogle Scholar
  94. Taylor, R.E., Haynes, C. V., Jr. and Stuiver, M. 1996 Clovis and Folsom age estimates: stratigraphic context and radiocarbon calibration. Antiquity 70: 515–525.Google Scholar
  95. Taylor, R.E., Stuiver, M., and Reimer, P.J. 1996 Development and extension of the calibration of the radiocarbon time scale: Archaeological applications. Quaternary Science Reviews (Quaternary Geochronology) 15: 655–668.CrossRefGoogle Scholar
  96. Thomas, D.H. 1978 The awful truth about statistics in archaeology. American Antiquity 43: 231–244.CrossRefGoogle Scholar
  97. Vries, H. de 1958 Variations in concentration of radiocarbon with time and location on earth. Proceedings, Nederlandsche Akademie van Wetenschappen, Series B61: 1.Google Scholar
  98. Vogel, J.S., Southon, J.R., Nelson, D.E. and Brown, T.A. 1984 Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research B52: 301–305.Google Scholar
  99. Vogel, J.S., Nelson, D.E. and Southon, J.R. 1987 14C background levels in an accelerator mass spectrometry system. Radiocarbon 29: 323–333.Google Scholar
  100. Welch, J.J., Bertsche, K.J., Firedman, P.G., Morris, D.E., Muller, R.A. and Tans, P.P. 1984 A 40 keV cyclotron for radioisotope dating Nuclear Instruments and Methods in Physics Research B5: 230–232.CrossRefGoogle Scholar
  101. Willis, E.H., Tauber, H. and Munnich, K.O. 1960 Variations in the atmospheric radiocarbon concentration over the past 1300 years. Radiocarbon 2: 1–4.Google Scholar
  102. Wilson, H.W. 1979 Possibility of measurement of 14C by mass spectrometer techniques. In Berger, R. and H. E. Suess, eds., Radiocarbon Dating. Berkeley, University of California Press: 238–245.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • R. E. Taylor
    • 1
  1. 1.Radiocarbon Laboratory, Department of Anthropology, Institute of Geophysics and Planetary PhysicsUniversity of CaliforniaRiversideUSA

Personalised recommendations