Advertisement

Climatostratigraphy

  • Martin J. Aitken
  • Stephen Stokes
Part of the Advances in Archaeological and Museum Science book series (AAMS, volume 2)

Abstract

The initial framework for global Quaternary climate change and climatostratigraphy was that based on the advance and retreat of alpine glaciers. Subsequently, this was supplemented by observation of such climatic indicators as fossil pollen, varves and loess. In recent decades, knowledge of past climate has been revolutionised by measurement of the oxygen isotope ratios of fossil microfauna in cores extracted from sediment on the floor of the deep ocean and detailed analysis of physical properties of continuous loess sequences and polar ice cores. The oxygen isotopic variations observed in ocean cores define the major global warm-cold transitions which characterise the glacial and interglacial stages (the basic climatostratigraphic units). An absolute timescale for the climatic variations is derived from the Milankovitch astronomical theory of climate. Isotopic and other variations on higher resolution timescales have been obtained for the last glacial-interglacial cycle from the polar ice caps and some deep sea cores. It is increasingly being realised that the frequently rapid climatic shifts between glacial stadial and interstadial sub-stages are more pronounced than had previously been thought. There is growing indication that the climatic predictions from ice core and oceanic sources are manifested terrestrially by climatic indicators such as those mentioned above, thereby allowing linkage of Palaeolithic chronology with the timescales used. Climate changes during the Quaternary period exhibit global synchroneity on millennial and longer timescales. On multimillennial (> 10 ka) timescales, they are principally controlled by the solar radiation budget. On shorter (millennial and sub-millennial) timescales, the changes are likely to be modulated to a large extent by changing ocean circulation patterns and interactions between the oceans, the cryosphere and the atmosphere. Fine resolution analysis of ice core climatic proxies have demonstrated that late Quaternary climatic changes have occurred, on occasions, on timescales of relevance to human activities, sometimes as short as decades.

Keywords

Oxygen Isotope Glacial Period Marine Isotope Stage Oxygen Isotope Ratio Quaternary Science Review 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam D.P., Sims, J.D. and Throckmorton, C.K. 1981 130,000 year continuous pollen record from Clear Lake County. Geology 9: 373–377.CrossRefGoogle Scholar
  2. Aitken, M.J. 1990 Science-based dating in archaeology. Longman, London and New York.Google Scholar
  3. Alley, R.B., Meese, D.A., Shuman, C.A., Gow, A.J., Taylor, K.C., Grootes, P.M., White, J.W.C., Ram, M., Waddington, E.D., Mayewski, P.A. and Zielinski, G.A. 1993 An abrupt increase in Greenland snow at the end of the Younger Dryas event. Nature 362: 527–529.CrossRefGoogle Scholar
  4. An, Z.S., Kukla, G.J., Porter, S.C., Xiao, J. 1991 Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130,000 years. Quaternary Research 8: 29–36.CrossRefGoogle Scholar
  5. Baksi, A.K. 1993 A new geomagnetic polarity time scale for 0-17 Ma. Geophysical Research Letters 20(15): 1607–1610.CrossRefGoogle Scholar
  6. Baksi, A.K., Hsu, V., McWilliams, M.O. and Farrer, E. 1992 40Ar/39Ar dating of the Brunhes-Matuyama geomagnetic field reversal. Science 256: 356–357.CrossRefGoogle Scholar
  7. Bard, E., Rostek, E and Songzogni, C. 1997 Interhemispheric synchrony of the last deglaciation inferred from alkenone palaeothermometry. Nature 385: 707–710.CrossRefGoogle Scholar
  8. Bar-Yosef, O. and Kra, R.S. (eds.) 1994 Late Quaternary chronology and palaeoclimates of the Eastern Mediterranean. Tucson, Radiocarbon.Google Scholar
  9. Bassino, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J. and Lancelot, Y. 1994 The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth and Planetary Science Letters 126: 91–108.CrossRefGoogle Scholar
  10. Beck, U.W., Récy, J., Taylor, F., Edwards, R.L. and Cabioch, G. 1997 Abrupt changes in early Holocene tropical sea surface temperature derived from coral records. Nature 385: 705–707.CrossRefGoogle Scholar
  11. Beer, J., Shen, CD., Heller, F., Liu, T.S., Bonani, G., Dittrich, B., Suter, M. and Kubik, PW. 1993 10Be and magnetic susceptibility in Chinese loess. Geophysical Research Letters 20: 57–60.CrossRefGoogle Scholar
  12. Behre, K.-E. and van der Plicht, J. 1992 Towards an absolute chronology for the last glacial period in Europe: radiocarbon dates from Oerel, northern Germany. Journal of Vegetational History and Archaeobotany 1: 111–117.Google Scholar
  13. Bender, M., Sowers, T., Dickson, M.-L., Orchardo, J., Grootes, P., Mayewski, PA. and Meese, D.A. 1994 Climate correlations between Greenland and Antarctica during the past 100,000 years. Nature 372: 663–666.CrossRefGoogle Scholar
  14. Berger, A. and Loutre, M.E. 1991 Insolation values for the climate of the last 10 million years. Quaternary Science Reviews 10: 297–317.CrossRefGoogle Scholar
  15. Blunier, T., Chapaellaz, J., Schwander, J., Stauffer, B. and Raynaud, D. 1995 Variations in atmospheric methane concentrations during the Holocene epoch. Nature 374: 46–49.CrossRefGoogle Scholar
  16. Bond, G., Broecker, W., Johnsen, S.J., McManus, J., Labeyrie, L., Jouzel, J. and Bonani, B. 1993 Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365: 143–147.CrossRefGoogle Scholar
  17. Boulton, G.S. 1993 Two cores are better than one. Nature 366: 507–508.CrossRefGoogle Scholar
  18. Bradbury, J.P. and Dean, W.E. 1991 Holocene limnology, vegetation and climatic history of Elk Lake, Minnesota. Geological Society of America, Special Paper No. 224.Google Scholar
  19. Broecker, W.S. 1994a Massive iceberg discharges as triggers for global climate change. Nature 372: 421–424.CrossRefGoogle Scholar
  20. Broecker, W.S. 1994b An unstable superconveyor. Nature 367: 414–415.CrossRefGoogle Scholar
  21. Broecker, W.S. and Van Donk, J. 1970 Insolation changes, ice volumes, and the O-18 record in deep-sea cores. Reviews in Geophysics and Space Physics 8: 169–188.CrossRefGoogle Scholar
  22. Broecker, W.S. and Denton, G.H. 1989 The role of ocean-atmosphere reorganisations in glacial cycles. Geochemica et Cosmochimica Acta 53: 2465–2501.CrossRefGoogle Scholar
  23. Broecker, W.S., Bond, G., Klas, M., Clark, E. and McManus, J. 1992 Origin of the northern Atlantic’s Heinrich events. Climate Dynamics 6: 265.CrossRefGoogle Scholar
  24. Broecker, W.S., Thurber, D.L., Goddard, J., Ku, T.-L., Mathews, R.K. and Mesolella, K.J. 1968 Milankovitch hypothesis supported by precise dating of coral reefs and deep-sea sediments. Science 159: 297–300.CrossRefGoogle Scholar
  25. Calvin, W.H. 1991 The ascent of mind: he age climates and the evolution of intelligence. Bantam Books, New York.Google Scholar
  26. Cande, S.C. and Kent, D.V. 1992 A new geomagnetic polarity timescale for the late Cretaceous and Cenozoic. Journal of Geophysical Research B97: 13917–13951.CrossRefGoogle Scholar
  27. Chappellaz, J., Barnola, J.M., Raynaud, D., Korotkevich, Y.S. and Lorius, C. 1990 Ice-core record of atmospheric methane over the past 160,000 years. Nature 345: 127–131.CrossRefGoogle Scholar
  28. Chappellaz, J., Blunier, T., Raynaud, D., Barnola, J.M., Schwander, J. and Stauffer, B. 1993 Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366: 443–445.CrossRefGoogle Scholar
  29. Charles, C.D., Lynch-Stieglitz, J., Ninnemann, U.S. and Fairbanks, R.G. 1996 Climatic connections between the hemispheres revealed by deep sea sediment core/ice core correlations. Earth and Planetary Science Letters 142: 19–27.CrossRefGoogle Scholar
  30. Coplen, T.B., Winograd, I.J., Landwehr, J.M. and Riggs, A.C. 1993 500,000-year stable carbon isotope record from Devil’s Hole, Nevada. Science 263: 361–365.CrossRefGoogle Scholar
  31. Corfield, R.M. 1995 An introduction to the techniques, limitations and landmarks of carbonate oxygen isotope palaeothermometry. In Bosence, D.W.J and Allison, PA., eds., Marine Palaeoenvironmental Analysis from Fossils. Geological Society Special Publication No. 83: 27-42.Google Scholar
  32. Dansgaard, W., Johnsen, S.J., Clausen, H.B., Dahl-Jensen, D., Gundesrup, N.S., Hammer, C.U., Hvidberg, C.S., Steffersen, J.P., Sveinbjrnsdottir, A.E., Jouzel, J. and Bond, G. 1993 Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364: 218–220.CrossRefGoogle Scholar
  33. de Menocal, P.B., Ruddiman, W.E and Pokras, E.M. 1993 Influences of high-and low-latitude forcing on african terrestrial climate: Pleistocene aeolian record from equatorial Atlantic Ocean drilling program, site 663. Palaeoceanography 8: 209–242.CrossRefGoogle Scholar
  34. Dowdeswell, J.A. and White, J.W.C. 1995 Greenland ice core records and rapid climate change. Philosophical Transactions of the Royal Society of London A32: 359–371.Google Scholar
  35. Eicher, U. 1979 Pollen-und Sauerstoffisotopenananysen an sptglazialen Profilen von Gerzensee, Faulenseemoos und vom Regenmoos ob Boltigen. Mitt. N.G. Bern 37: 65–80.Google Scholar
  36. Emiliani, C. 1955 Pleistocene temperatures. Journal of Geology 63: 538–578.CrossRefGoogle Scholar
  37. Field, M.H., Huntley B. and Mller, H. 1994 Eemian climate fluctuations observed in a European pollen record. Nature 371: 779–783.CrossRefGoogle Scholar
  38. Fink, J. and Kukla, G.J. 1977 Pleistocene climates in central Europe: at least 17 interglacials after the Olduvai event. Quaternary Research 7: 363–371.CrossRefGoogle Scholar
  39. Forster, Th. and Heller, F. 1994 Loess deposits from the Tajik depression (Central Asia): Magnetic properties and paleoclimate. Earth and Planetary Science Letters 128: 501–512.CrossRefGoogle Scholar
  40. Gasse, F., Tehet, R., Durand, A., Gilbert, E. and Fontes, J.-C. 1990 The arid-humid transition in the Sahara during the last deglaciation. Nature 346: 141–146.CrossRefGoogle Scholar
  41. Grimm, E.C., Jacobson, G.L., Watts, A.W., Hansen, B.C.S. and Maasch, K.A. 1993 A 50,000-year record of climate oscillations from Florida: Temporal correlation with the Heinrich events. Science 261: 198–200.CrossRefGoogle Scholar
  42. Grootes, P.M., Stuiver, M., White, J.W.C., Johnsen, S. and Jouzel, J. 1993 Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366: 552–554.CrossRefGoogle Scholar
  43. Guiot, J., Pons, A., de Beaulieu, J.L. and Reille, M. 1989 A 140,000-year continental climate reconstruction from two European pollen records. Nature 338: 309–313.CrossRefGoogle Scholar
  44. Hays, J.D. Imbrie, J., and Shackleton, N.J. 1976 Variations in the earth’s orbit: pacemaker of the ice ages. Science 194: 1121–1132.CrossRefGoogle Scholar
  45. Heinrich, H. 1988 Origin and consequences of cyclic ice-rafting in the Northeast Atlantic Ocean during the past 130,000 years. Quaternary Research 29: 143–152.CrossRefGoogle Scholar
  46. Heller, F. and Evans, M.E. 1995 Loess Magnetism. Reviews of Geophysics 33: 211–240.CrossRefGoogle Scholar
  47. Holmes, J.A. 1992 Nonmarine ostracods as Quaternary palaeoenvironmental indicators. Progress in Physical Geography 16: 405–431.CrossRefGoogle Scholar
  48. Hovan, S.A., Rea, D.K., Pisias, N.G and Shackleton, N.J. 1989 A direct link between the China loess and marine δ18O records: aeolian flux to the north Pacific. Nature 340: 296–298.CrossRefGoogle Scholar
  49. Hughen, K.A., Overpeck, J.T., Peterson, L.C. and Trumbore, S. 1996 Rapid climate changes in the tropical Atlantic during the last déglaciation. Nature 380: 51–54.CrossRefGoogle Scholar
  50. Imbrie J.A. and Imbrie, J.K. 1980 Modelling the climatic response to orbital variations. Science 207: 943–953.CrossRefGoogle Scholar
  51. Imbrie J.A. and Imbrie, K.P. 1986 Ice Ages. Cambridge, Harvard University Press.Google Scholar
  52. Imbrie J.A., Mix, A.C. and Martinson, D.G. 1993 Milankovitch theory viewed from Devils Hole. Nature 363: 531–533.CrossRefGoogle Scholar
  53. Imbrie J.A., Hays, J.D., Martinson, D.G., Mclntyre, A., Mix, A.C., Morley, J.J., Pisias, N.G., Prell, W.L. and Shackleton, N.J. 1994 The orbital theory of Pleistocene climate: support from a revised chronology of the marine δ18O record. In Berger, A., Imbrie, J., Hays, J., Kukla, G., and Saltzman, B., eds., Milankovitch and Climate, part I: 269–305, Amsterdam, Plenum, Reidel, and Dordecht.Google Scholar
  54. Johnsen, S.J., Clausen, H.B., Dansgaard, W., Gundestrup, N.S., Hammer, C.U. and Tauber, H. 1995 The Eem stable isotope record along the GRIP ice core and its interpretation. Quaternary Research 43: 117–124.CrossRefGoogle Scholar
  55. Jouzel, J., Lorius, C., Petit, J.R., Genthon, C., Barkov, N.I., Kotlyakov, V.M. and Petrov, V.M. 1987 Vostok ice core: a continuous isotope temperature record over the last climatic cycle 160,000-years. Nature 329: 403–408.CrossRefGoogle Scholar
  56. Jouzel, J., Barkov, N.I., Barnola, J.M., Bender, M., Chappellaz, J., Genthon, C., Kotlyakov, V.M., Lipenkov, V., Lorius, C., Petit, J.R., Raynaud, D., Raisbeck, G., Ritz, C., Sowers, T., Stievenard, M., Yiou, F. and Yiou, P. 1993 Extending the Vostok ice-core record of palaeo-climate to the penultimate glacial period. Nature 364: 407–412.CrossRefGoogle Scholar
  57. Kaiser, K.F. 1993 Beitrge zur Klimageschichte vom spten Hochglazial bis insjrhe Holozn rekonstruiert mit Jahrringen und Molluskenschalen aus verschiedenen Vereisungsgebieten. Winterthur, Zeigler Druck-and Verlags-AG.Google Scholar
  58. Kaiser, K.F. and Eicher, U. 1987 Fossil pollen, molluscs, and stable isotopes in the Dttnau valley, Switzerland. Boreas 16: 293–303.CrossRefGoogle Scholar
  59. Kukla, G. 1987 Loess stratigraphy in central China. Quaternary Science Reviews 6: 191–219.CrossRefGoogle Scholar
  60. Kukla, G. 1995 Supercycles, superterminations and the classical Pleistocene subdivisions. In Abstracts, Terra Nostra, Schriften der Alfred-Wegener-Stiftung, International Union for Quaternary Research, XIV International Congress: 149.Google Scholar
  61. Kukla, G. and Cilek, V. 1996 Plio-Pleistocene megacycles: record of climate and tectonics. Palaeogeography, Palaeoclimatology, Palaeoecology 120: 171–194.CrossRefGoogle Scholar
  62. Kukla, G., An, Z.S., Melice, J.L., Gavin, J. and Xiao, J.L. 1990 Magnetic susceptibility record of Chinese loess. Transactions of the Royal Society of Edinburgh 81: 263–288.CrossRefGoogle Scholar
  63. Lauritzen, S.-E. 1995 High-resolution paleotemperature proxy record for the last interglacial based on Norwegian speleothems. Quaternary Research 43: 133–146.CrossRefGoogle Scholar
  64. Lowe, J.J. and Walker, M.J.C. 1997 Reconstructing Quaternary Environments. 2nd Edition. London, Longmans.Google Scholar
  65. Lowe, J.J., Coope, G.R., Sheldrick, C., Harkness, D.D. and Walker, M.J.C. 1995 Direct comparison of UK temperatures and Greenland snow accumulation rates, 15000–12000 yr ago. Journal of Quaternary Science 10: 175–180.CrossRefGoogle Scholar
  66. Lowell, T.V., Heusser, C.J., Andersen, B.G., Moreno, P.I., Hauser, A., Heusser, L.E., Schluchter, C., Marchant, D.R., Denton, G.H. 1995 Interhemispheric correlation of late Pleistocene glacial events. Science 269: 1541–1549.CrossRefGoogle Scholar
  67. MacAyeal, D.R. 1993 Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantics Heinrich Events. Palaeoceanography 8: 775–784.CrossRefGoogle Scholar
  68. Maher, B.A. & Thompson, R. 1992 Paleoclimatic significance of the mineral magnetic record of the Chinese loess and paleosols. Quaternary Research 37: 155–170.CrossRefGoogle Scholar
  69. Mankinin, E.A. and Dalrymple, G.P. 1979 Revised geomagnetic polarity timescale for the interval 0–5 m.y. B.P. Journal of Geophysical Research 84(B2): 615–626.CrossRefGoogle Scholar
  70. Martinson, D.G., Pisias, N.G., Hays, J.D., Imbrie, J., Moore, T.C. and Shackleton, N.J. 1987 Age dating and the orbital theory of the Ice Ages: development of a high-resolution 0 to 300,000-year chronostratigraphy. Quaternary Research 27: 1–29.CrossRefGoogle Scholar
  71. Mesolella, K.J., Mathews, R.K., Broecker, W.S. and Thurber, D.L. 1969 The astronomical theory of climate change: Barbados data. Journal of Geology 77: 250–274.CrossRefGoogle Scholar
  72. Milankovitch, M.M. 1941 Canon of insolation and the Ice-age problem. Kniglich Serbische Akadamie, Beograd. English translation by the Israel Program for Scientific translations, published for the US Department of Commerce and the National Science Foundation, Washington, D.C. 1969.Google Scholar
  73. Müller, H. 1974 Pollenanalytische Untersuchungen und Jahresschichtenzlung an der eemzeitlichen Kieselgur von Bispingen/Luhe. Geol. Jahrbuch A21: 161–177.Google Scholar
  74. Peteet D. 1993 Global Younger Dryas? EOS 74: 587–589.CrossRefGoogle Scholar
  75. Pons, A., Guiot, J., de Beaulieu, J.L. and Reille, M. 1992 Recent contributions to the climatology of the last glacial-interglacial cycle based on French pollen sequencies. Quaternary Science Reviews 11: 439–448.CrossRefGoogle Scholar
  76. Porter, S.C. and An Z. 1995 Correlation between climatic events in the North Atlantic and China during the last Glaciation. Nature 375: 305–307.CrossRefGoogle Scholar
  77. Prell, W.L., Imbrie, J., Martinson, D.G., Morley, J.J., Pisias, N.G. Shackleton, N.J. and Streeter, H.F. 1986 Graphic correlation of oxygen isotope stratigraphy and application to the Late Quaternary. Paleoceanography 1: 137–162.CrossRefGoogle Scholar
  78. Robinson, S.G. 1986 The late Pleistocene palaeolclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Physics of the Earth and Planetary Interiors 42: 22–47.CrossRefGoogle Scholar
  79. Ruddiman, W.F., Raymo, M.E., Martinson, D.G., Clement, B.M. and Backman, J. 1989 Pleistocene evolution: Northern hemisphere ice sheets and North Atlantic Ocean. Palaeoeanography 4: 353–412.CrossRefGoogle Scholar
  80. Rutter, N. and Ding, Z. 1993 Paleoclimates and monsoon variations interpreted from micromorphogenic features of the Baoji palaeosols, China. Quaternary Science Reviews 12: 853–862.CrossRefGoogle Scholar
  81. Seidenkrantz, M.-S., Kristensen, P. and Knudsen, K.L. 1995 Marine evidence for climatic instability during the last interglacial in shelf records from Northwest Europe. Journal of Quaternary Science 10: 77–82.CrossRefGoogle Scholar
  82. Sejrup, H.P., Haflidason, H., Kristensen, D.K. and Johnsen, S.J. 1995 Last Interglacial and Holocene climate development in the Norwegian Sea region: ocean front movements and ice core data. Journal of Quaternary Science 10: 385–390.CrossRefGoogle Scholar
  83. Shackleton, N.J. and Opdyke, N.D. 1973 Oxygen isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–238: temperatures and ice volumes on a 103 and 106 year scale. Quaternary Research 3: 39–55.CrossRefGoogle Scholar
  84. Shackleton, N.J. and Opdyke, N.D. 1976 Oxygen-isotope and palaeomagnetic stratigraphy of equatorial Pacific core V28–239: Late Pliocene to latest Pleistocene. In Cline, R.M. and Hays, J.D., eds., Investigation of Late Quaternary Paleooceanography and Paleoclimatology. Memoir 145, Geological Society of America, Boulder, Colorado: 449-464.Google Scholar
  85. Shackleton, N.J., Berger, A. and Peltier, W.R. 1990 An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Transactions of the Royal Society of Edinburgh: Earth Sciences 81: 251–261.CrossRefGoogle Scholar
  86. Shackleton, N.J., An,-Z., Dodonov, A.E., Gavin, J., Kukla, G.J., Ranov, V.A. and Zhou, L.P. 1995 Accumulation rate of loess in Tadjikistan and China; relationship with global ice volume cycles. In Derbyshire, E. ed., Wind blown sediments in the Quaternary record. Quaternary Proceedings 4: 1-6.Google Scholar
  87. Sherratt, A. 1996 Plate tectonics and imaginary prehistory. In Harris, DJ. ed., The origins and spread of agriculture and pastoralism in Eurasia. Baton Racon, UCL Press: 130–140.Google Scholar
  88. Siegenthaler, U., Eicher, U. and Oeschger, H. 1984 Lake sediments as continental δ18O records from the Glacial/Postglacial transition. Annals of Glaciology 5: 149–152.Google Scholar
  89. Sowers, T., Bender, N., Labeyrie, L., Martinson, D., Jouzel, J., Raynaud, R., Pichon, J.J. and Korotkevich, Y.S. 1993 A 135,000-year Vostok-Specmap common temporal framework. Paleoceanography 8: 737–766.CrossRefGoogle Scholar
  90. Spell, T.L. and McDougall, I. 1992 Revisions to the age of the Brunhes-Matuyama boundary and the Pleistocene geomagnetic polarity timescale. Geophysical Research Letters 19: 1181–1184.CrossRefGoogle Scholar
  91. Stokes, S., Haynes, G., Thomas, D.S.G., Horrocks, J.L., Higginson, M. and Malifa, M. 1997 Punctuated aridity in southern Africa during the last glacial cycle: The chronology of linear dune construction in the northeastern Kalahari. Palaeoclimatology, Palaeogeography. Palaeoecology, in press.Google Scholar
  92. Street-Perrott, EA. 1993 Ancient tropical methane. Nature 366: 411–412.CrossRefGoogle Scholar
  93. Street-Perrott, F.A. 1994 Palaeo-perspectives: Changes in terrestrial ecosystems. Ambio 23(1): 37–44.Google Scholar
  94. Street-Perrott, F.A. and Perrott, R.A. 1990 Abrupt climate change in the tropics: an oceanic feedback mechnism. Nature 343: 607–612.CrossRefGoogle Scholar
  95. Stute, M., Forster, M., Frischkorn, H., Serejo, A., Clark, J.F., Schlosser, P., Broecker, W.S. and Bonani, G. 1995 Cooling of tropical brazil (5°C) duing the Last Glacial Maximum. Science 269: 379–383.CrossRefGoogle Scholar
  96. Taylor, K.C., Hammer, C.U., Alley, R.B., Clausen, H.B., Dahl-Jensen, D., Gow, A.J., Gundestrup, N.S., Kipfstuhl, J., Moore, J.C. and Waddington, E.D. 1993 Electrical conductivity measurements from the GISP2 and GRIP Greenland ice cores. Nature 366: 549–552.CrossRefGoogle Scholar
  97. Thouveny, N., de Beaulieu, J.-L., Bonifay, E., Creer, K.M., Guiot, J., Icole, M., Johnsen, S., Jouzel, J., Reille, M., Williams, T. and Williamson, D. 1994 Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 371: 503–506.CrossRefGoogle Scholar
  98. Turon, J.-L. 1984 Direct land/sea correlations in the last interglacial complex. Nature 309: 673–676.CrossRefGoogle Scholar
  99. Tzedakis, P.C. 1993 Long-term tree populations in northwest Greece through multiple Quaternary climatic cycles. Nature 364: 437–440.CrossRefGoogle Scholar
  100. Tzedakis, P.C., Bennett, K.D. and Magri, D. 1994 Climate and the pollen record. Nature 370: 513.CrossRefGoogle Scholar
  101. Urey, H.C. 1948 Oxygen isotopes in nature and in the laboratory. Science 108: 489–496.CrossRefGoogle Scholar
  102. Wendorf, F., Schild, R., Close, A.E., Schwarcz, H.P., Miller, G.H., Grun, R., Bluszcz, Stokes, S., Morawska, M., Huxtable, J., Lundberg, J., Hill., C.L. and McKinney, C. 1994 A chronology for the Middle and Late Pleistocene wet episodes in the Eastern Sahara. In Bar-Yosef, O. and Kra, R.S., eds., Late Quaternary chronology and palaeoclimates of the Eastern Mediterranean. Tucson, Radiocarbon: 147-168.Google Scholar
  103. Williams, M.A.J., Dunkerley, D.L., DeDeckker, P., Kershaw, A.P. and Stokes, T. 1992 Quaternary Environments. New York, Edward Arnold.Google Scholar
  104. Winograd, I.J., Coplen, T.B., Landwehr, J.M., Riggs, A.C., Ludwig, K.R., Szabo, B.J., Kolesar, P.T. and Revesz, K.M. 1992 Continuous 500,000-year climate record from vein calcite in Devil’s Hole, Nevada. Science 258: 255–260.CrossRefGoogle Scholar
  105. Zeuner, F. 1946 Dating the Past (1st ed.). Methuen, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Martin J. Aitken
    • 1
  • Stephen Stokes
    • 2
  1. 1.Research Laboratory for ArchaeologyOxford UniversityUK
  2. 2.School of GeographyOxford UniversityUK

Personalised recommendations